Skip to main content

The Legacy of Al-Khwārazmı̄ in History of Algebra

  • Chapter
  • First Online:
Research in History and Philosophy of Mathematics

Abstract

Muḥammad ibn Mūsā al-Khwārazmı̄ is today arguably the most well-known medieval Arabic mathematician. His significant work on arithmetic, algebra, and astronomical tables were written in Baghdad in the first half of the third/ninth century. This paper traces the impact of al-Khwārazmı̄’s Kitāb al-jabr wa-l-muqābala (Book of algebra) on the field of algebra.

This article began as a lecture I delivered at the one-day seminar “al-Khwārizmı̄’s contribution to civilization” held November 21, 2016 at Hamid bin Khalifa University in Doha, Qatar. All translations are mine unless noted otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Until recently the standard transliteration of his name was “al-Khwārizmı̄”. Those who deem what is proper have recently adjusted the rule, so we now write “al-Khwārazmı̄”.

  2. 2.

    For dates relating to Islamic civilization we give both Muslim and Christian dates. Here, the third century AH corresponds roughly to the ninth century CE.

  3. 3.

    See (Gutas 1998, 53–60) for what is known about the Bayt al-Ḥikma. The work of al-Khwārazmı̄ that best fits the mission of the library is his book on astrological history.

  4. 4.

    The book survives in a medieval Latin reworking of a Latin translation. The complete edition with German translation and English summary is published in (al-Khwārazmı̄ 1997). For an English translation of roughly the first half, see (Crossley 1990). For the Arabic title, see (Saidan 1987, 440).

  5. 5.

    See the discussion in (Saidan 1987, 439–40).

  6. 6.

    The Arabic text with English translation is published in (al-Khwārazmı̄ 2009), which is translated from the French edition (al-Khwārazmı̄ 2007). (al-Khwārazmı̄ 2009b) contains a facsimile of the Oxford manuscript with a Spanish translation.

  7. 7.

    The Arabic original is lost, but much of this zı̄j can be reconstructed from later books that preserve parts of the original through borrowings and commentaries. The main sources are: (a) Adelard of Bath’s twelfth-century Latin translation of an Arabic recension made in the late tenth century in Cordova by Maslama al-Majrı̄ṭı̄, (b) twelfth-century Latin and Hebrew translations of the tenth-century Arabic commentary by al-Muthannā, (c) a tenth-century commentary by Ibn Masrūr, and (d) the eleventh-century Toledan Tables of al-Zarqālı̄.

  8. 8.

    See (Abdeljaouad & Oaks 2021, 25ff; Oaks 2023) for explanations of the different techniques.

  9. 9.

    The translation takes into account the critical apparatus. In nearly all instances of confrontation in Arabic texts, the word qabala is not invoked: the authors simply make the subtraction.

  10. 10.

    (al-Khwārazmı̄ 2009, 97.17, 101.3). I label the two groups as “simple” and “composite” following al-Karajı̄. Al-Khwārazmı̄ did not give names to the two kinds.

  11. 11.

    Here “two māls and ten roots equal forty-eight dirhams” is the algebraic equation, in which the words māl and jidhr (root) are the algebraic names of the powers. The meaning of the equation is then explained by re-expressing it as an arithmetic problem, “what two māls, if added together and the same as ten of its roots are added to it, amounts to forty-eight dirhams?”, where māl and jidhr assume their arithmetical meanings of “quantity” and “square root”. Several other Arabic authors explain the meanings of equations this way.

  12. 12.

    I.e., the equation. At this point in time there was no word for algebraic “equation” in Arabic. That would come with the translation of Diophantus’s Arithmetica later in the century.

  13. 13.

    In this problem al-Khwārazmı̄ performs this step out of order from the norm. Setting the number of māls to 1 should be the first step in stage 3, as he himself instructed when he explained the six equations.

  14. 14.

    (al-Khwārazmı̄ 2009, 153), taking into account the critical apparatus.

  15. 15.

    There are 23 such problems in al-Khwārazmı̄’s book. Of the three remaining problems, two deal with an amount of money distributed among some men. The interpolated problem (7) in the Oxford manuscript deals with wheat and barley.

  16. 16.

    See (Oaks 2015) for more on the notion of “algebra proper”.

  17. 17.

    (Rashed & Vahabzadeh 1999, 117.5). In applications of algebra to mensuration (misāḥa) it is the numerical measures of the lines and areas that are found. Al-Khayyām presumes the reader is already familiar with the basics of algebraic problem-solving. His book is devoted to geometric solutions to simplified cubic equations (Oaks 2011b).

  18. 18.

    (al-Fārisı̄ 1994, 461.19). The “proportional numbers” are the powers of the unknown: the unit, the thing, the māl, the cube, etc.

  19. 19.

    See (al-Fārisı̄ 1994, 463.1) for the Arabic text, and (Christianidis & Oaks 2023, 54, 60) for English translations of part of it.

  20. 20.

    (Ibn Khaldūn 1967 III, 124), Rosenthal’s translation.

  21. 21.

    The Greek books are edited in (Diophantus 1893–5) and translated into French in (Diophantus 1959). The Arabic books are edited and translated into English in (Sesiano 1982), and edited and translated into French in (Diophantus 1986). A complete English translation of all ten extant books has recently been published in (Christianidis & Oaks 2023).

  22. 22.

    Two of Diophantus’s derivations are preserved in al-Karajı̄’s al-Fakhrı̄, and all three are transformed into proofs in another short work of al-Karajı̄ as well as in a work of Fakhr al-Dı̄n al-Ḥilāṭı̄ (Oaks 2018; Christianidis & Oaks 2023, 63–6).

  23. 23.

    (Ibn al-Nadı̄m 2009, II/1, 219, 259.11; Saidan 1971, 126.7).

  24. 24.

    Only one Arabic manuscript of Abū Kāmil’s Algebra is extant: Istanbul, Beyazid Library, Kara Muṣṭafa Paşa collection 379 (new number 19046), published in facsimile in (Abū 1986) and edited with French translation in (Abū Kāmil 2012). See also (Levey 1966) for an edition of a medieval Hebrew translation with English translation. More recent is the edition and English translation of the Hebrew translation on the Mispar project website: https://mispar.ethz.ch/wiki/Main_Page.

  25. 25.

    For the nine examples of simple equations, only \(x^2=5x\) and \({1\over 2}x=10\) are the same.

  26. 26.

    Abū Kāmil’s problems (T2) and (T3) are the same as al-Khwārazmı̄’s, and his (T5), (11), and (14) are al-Khwārazmı̄’s (1), (5), and (31) respectively. Other problems are modifications of al-Khwārazmı̄’s.

  27. 27.

    The earliest known authors of books on anwā' are Sahl ibn Nawbakht (fl. ca. 200/800), Abū Ma`shar (171–272/787–886), and Thābit ibn Qurra. Al-Khwārazmı̄’s chapter on mensuration in his Algebra is the earliest extant Arabic treatment of the subject. The earliest extant book on finger reckoning is by Abū-l-Wafā' (328–388/940–998), though it is likely that some lost ninth century books reported by other authors dealt with the same topic, perhaps even al-Khwārazmı̄’s Book of adding and subtracting. The earliest known treatises on double false position are by Abū Kāmil (late 9th c.) and Qusṭā ibn Lūqā (d. ca. 910). For surveys of Arabic arithmetic, see (Oaks 2023) and the introductions to (al-Uqlı̄disı̄ 1978) and (Abdeljaouad & Oaks 2021).

  28. 28.

    “Abu Bakr” is an error. King suggests that our commentator confused the algebraist with “the fourth/tenth-century litterateur named Abū Bakr (Muḥammad ibn al-`Abbās) al-Khwārizmı̄ (d. 393/1002-3)” (King 1988, 28).

  29. 29.

    (King 1988, 26–7; King 2012, 228), his translation. A manuscript of al-Khuzā`ı̄’s book, British Library, MS Delhi Arabic 1897/1, ff. 1a-124b, is available online: http://www.qdl.qa/en/archive/81055/vdc~ 100042392200.0x000001. The passage quoted begins at fol. 1b.20.

  30. 30.

    Abū Kāmil mentions the ḥussāb in ten different passages in his book, and calls himself a ḥāsib in the last of these (Abū Kāmil 2012, 781).

  31. 31.

    The same may be true of the brief book of geometrical problems of the late third/ninth century Nu`aim ibn Muḥammad ibn Mūsā. Problem 4 gives geometric proofs based in Euclid for the solutions to the types 4 and 5 equations, and Problems 37 to 42 are geometrical variations of al-Khwārazmı̄’s Problem (9). There is no clear dependence on al-Khwārazmı̄ among these problems (Hogendijk 2003).

  32. 32.

    These are Problems (14)–(17) in Abū Kāmil’s Book on algebra (Abū Kāmil 2012, 385.8–387.18) (Rashed numbers these as \(\langle \)20\(\rangle \) to \(\langle \)23\(\rangle \)); Problem III.22 in al-Karajı̄’s al-Fakhrı̄ (Saidan 1986, 221.15); Problem III.2 in Ibn al-Bannā'’s Book on the fundamentals and preliminaries in algebra (Saidan 1986, 575.1); and Problem (21) in Ibn al-Khawwām’s Magnificent benefits of the rules of calculation, which was copied in al-Fārisı̄’s commentary Foundation of the rules on elements of benefits (al-Fārisı̄ 1994, 549.16). Al-Khwārazmı̄’s Problem (31) is the same as Abū Kāmil’s (14), al-Karajı̄’s III.22, and Ibn al-Bannā'’s III.2. The other problems are all different. In all of these authors other nearby problems are of the same basic type, and sometimes their algebraic solutions have no explicit assignment statement.

  33. 33.

    Regardless what method is used to work out a problem, the solution to a problem in Arabic arithmetic usually begins “By the rule (qiyās)” or “Its rule is”.

  34. 34.

    The other three problems with a second solution by algebra are Problems (14) and (16) in Abū Kāmil, where the algebraic solutions are attributed to one Abū Yūsuf and are written in the margin of the Istanbul manuscript, and Ibn al-Bannā'’s problem.

  35. 35.

    Translation adjusted from (al-Khwārazmı̄ 2009, 140).

  36. 36.

    (al-Khwārazmı̄ 2009, 101.5), taking into account the critical apparatus and the commentary of al-Khuzā`ı̄.

  37. 37.

    (al-Khwārazmı̄ 2009, 113) misplaces point B.

  38. 38.

    See also (Høyrup 1986, 473–475; 1996, 48–49; 2002, 412–414).

  39. 39.

    (Saidan 1986, 509.8). We can write this in modern algebraic notation as \((x+y)(x-y)=x^2-y^2=(x-y)^2+2(x-y)y\), but to Ibn al-Bannā' this rule and the others he states are not part of al-jabr wa-l-muqābala since they are not stated in algebraic language and they do not ask for the value of an unknown number.

  40. 40.

    Al-Muqaddima al-kāfiyya fı̄ ḥisāb al-jabr wa’l-muqābala wa mā yu`rafu bihi qiyāsuhū min al-amthila, Vatican MS Sbath 5.

  41. 41.

    Kitāb fı̄hi ikhtiṣār al-jabr wa’l-muqābala, published in (Saidan 1986).

  42. 42.

    (Rashed & Vahabzadeh 2000, 120-1).

  43. 43.

    MS Cairo, Riyadāt 260/4, ff. 95r-104v.

  44. 44.

    (Ibn Khaldūn 1967 III, 125–26). Rosenthal’s translation, with adjustments to the transliterated names.

  45. 45.

    In what follows, the first number is the number of lines devoted to the six equations, and the second number is the number of lines devoted to other examples and rules. Diagrams are not taken into account: Al-Khwārazmı̄ (185, 185), Abū Kāmil (345, 574) (some rules are stated and proven among the worked out problems (2), (7), (61), (62), and (63)), al-Karajı̄ (471, 1118), Ibn al-Bannā' (333, 827), `Alı̄ al-Sulamı̄ (135, 871) (Not counting three pages of tables on the names of the powers. Numbers are from the Vatican manuscript), and Ibn Badr (85, 169).

  46. 46.

    (Lamrabet 2014, 54–61) lists over 25 astronomers and mathematicians who are known to have worked in Cordova during this time.

  47. 47.

    Robert’s translation is published in (Hughes 1989) and Gerard’s in (Hughes 1986).

  48. 48.

    “Incipit liber gebre de numero translatus a magistro Guillelmo de lunis in quadriviali sciencia peritissimo”, fol 80a, quoted in (Hughes 1986, 223). The manuscript is Florence, Biblioteca Nazionale Conv. soppr. J.V.18, ff. 80a-86b.

  49. 49.

    The algebra proper is edited in (Sesiano 1993) and the second part on the pentagon and decagon is edited in (Lorch 1993).

  50. 50.

    Hissette writes: “la traduction latine de l’al-Jabr d’Abū Kāmil, dont P est assurément une copie, n’a pu être réalisée après la fin du XII\({ }^{\mathrm {e}}\) siècle.” (1999, 313). For this date he cites an article by André Allard, which in turn cites (Karpinski 1911). But the only indication of the date of the translation I found there is merely implied: “The notation of fractions employed by this translator of Abu Kamil resembles the peculiar system employed later by Leonard [i.e., Fibonacci]” (p. 53).

  51. 51.

    Marc Moyon published the critical edition (2019) and a French translation (2017). The word restauracionis is a translation of the Arabic al-jabr. Several scholars have attributed this reworking to Gugielmo de Lunis based in the gloss in the Florence manuscript of Gerard’s translation and remarks in two medieval Italian texts (to be investigated below), but Jens Høyrup has convincingly argued against Guglielmo’s authorship (Høyrup 2010, 13).

  52. 52.

    The Latin edition was first published by Baldassarre Boncompagni in (Fibonacci 1857), L. E. Sigler published an English translation in (Fibonacci 2002), and a new Latin edition was published by Enrico Giusti in (Fibonacci 2020).

  53. 53.

    (Fibonacci 1862) contains Boncompagni’s Latin edition and (Fibonacci 2008) the English translation of Barnabas Hughes.

  54. 54.

    Proposition I-3 is from al-Khwārazmı̄’s problem (1), I-4 from (T4), I-14 from (2), I-15 from (3), I-17 from (10), I-19 from (T3), I-20 from (4), and I-29 from (6). Of these eight propositions, all but I-4 and I-15 are also in Abū Kāmil.

  55. 55.

    (Jordanus de Nemore 1981, 52), translated in (Høyrup 1988, 333).

  56. 56.

    These letters function like the letters in Euclid’s Books VII-IX and in Book II of Pappus’s Collection, and not like the letters used in algebra. Apart from concatenation to produce sums, they are not combined to form more complex expressions via operations (Oaks 2018c, §5.4).

  57. 57.

    Three more problems are common to both books so we cannot identify their source. These three are also in Abū Kāmil, which is Fibonacci’s source.

  58. 58.

    “Rendiamo gratie all’Altissimo, chosì chomincia el testo de l’Aghabar arabico nella reghola del geber la quale noi diciamo algebra. La quale reghola d’algebra, secondo Guglielmo de Lunis translatatore, inporta di questi 7 nomi cioè: geber, el melchel, el chal, el chelif, el fatiar, diffar el buram, el termem. É qualj nomi, secondo el detto Guglielmo, sono chosì interpretati. Geber è quanto a dire recuperatione inperoché, chome per lo seguente si chonprenderà, nella recuperatione di 2 parti igualj s’asolve il chaso [\(\ldots \)]” (Benedetto da Firenze 1982, 1).

  59. 59.

    (Anonimo Fiorentino 1992). Algebra was often called in Italian “regola della cosa” (“rule of the thing”) because of the name cosa (“thing”), translated from the Arabic shay' for the first-degree unknown.

  60. 60.

    “l Aregola dellargibra la quale reghola ghuolelmo a lunis latraslato darabicho anostra linghua e sechondo el detto ghuol.mo e altri dichono questa esser chomposta dauno maestro arabo invero di grande intelligenza benche alchuno altrj dichono esser stati uno del quale il nome era Geber a che lionardo pisano dice che algebra muchalbile ella interpretatione della reghola inq.lla linghua el testo (the edition reads “resto”) della detta reghola inchominca ’andano gratie allaltissimo ess.do el ditto ghuol.mo la ditta reghola inqu.lla linghua chontiene sette nomi coe sette parti chosi nella ditta linghua nominati: Geber el melchel Elchal Elchelis Elfatiar diffarel buran eltiemin e quali nomi sechondo il ditto ghuol.mo chosi sono interpretati [\(\ldots \)]” (Procissi 1954, 302).

  61. 61.

    The common phrase “and which names, according to the said Guglielmo, are interpreted like this” speaks for direct copying, as do other common elements not taken from Guglielmo.

  62. 62.

    My interpretation of the passages involving Guglielmo de Lunis may be wrong, of course. Jens Høyrup has a different view of these passages, which he also translates (Høyrup 2019, 335–6).

  63. 63.

    (Piero della Francesca 1970, 133). Translating from Problem (5) of al-Khwāriazmı̄, it is: “If [someone] says, ten: you divide it into two parts and you multiply one of the parts by five and you divide it by the other. Then you cast away half of what you gathered and you add it to the multiplication by five, so it gives fifty dirhams” (al-Khwārazmı̄ 2009, 165.7). Converted to modern algebra, the problem asks for a and b such that \(a+b=10\) and \({1\over 2}({5a\over b})+5a=50\).

  64. 64.

    (M\({ }^{\mathrm {o}}\) Biagio 1983, 23.11). The “plus” translates the Italian più, which takes a meaning like “more” or “further”. This is Problem (T4) in al-Khwārazmı̄: “A māl: you multiply its third and a dirham by its fourth and a dirham to get twenty” (al-Khwārazmı̄ 2009, 151.2). Converted to modern algebra, it asks for a such that \(({1\over 3}a+1)({1\over 4}a+1)=20\).

  65. 65.

    (Gori 1984, 27). Al-Khwārazmı̄’s Problem (21) asks: “If [someone] says, a māl: you remove its third and three dirhams, then you multiply what remains by itself, it brings back the māl.” (al-Khwārazmı̄ 2009, 181.7). The other problem, at (Gori 1984, 7), is about the buying of cloth. It ultimately comes from al-Khwārazmı̄’s Problem (T6).

  66. 66.

    The Arabic title of this book is Kitāb al-bayān wa-l-tadhkār fı̄ ṣan`at `amal al-ghubār (Book of demonstration and recollection in the art of dust-board reckoning). An Arabic manuscript is available online: https://openn.library.upenn.edu/Data/0001/html/ljs293.html (accessed August 14 2022). For an English translation of one of the problems solved three different ways, see (Abdeljaouad & Oaks 2021, 250-1).

  67. 67.

    The text with English translation is published in (Wartenberg 2015). Some selections from this translation appear in (Wagner 2016, 362–374).

  68. 68.

    The algebra proper is edited and translated into English in (Levey 1966), the second part, On the pentagon and decagon, was translated into Italian by Sacerdote in 1896, and all three parts are edited and translated into English on the Mispar project website, https://mispar.ethz.ch/wiki/Main_Page. The third part extends only to problem (50) by Rashed’s numbering (Abū Kāmil 2012, 702), omitting the last 20 problems and the section on arithmetical and geometric progressions. Even some of the first 50 are skipped.

  69. 69.

    Finzi’s translation is described in (Lévy 2007; Wagner 2013), and Wagner’s partial edition, covering through the six standard equations, is edited in (Wagner 2013b). I thank Roi Wagner and Naomi Aradi for suggesting adjustments to what I wrote in this section.

  70. 70.

    (Morse 1981, 60ff). On the date, see (Zinner 1990, 69). The whole story is recounted in more detail in (Christianidis & Oaks 2023, 183ff).

  71. 71.

    For a discussion of the oration see (Rose 1975).

  72. 72.

    The words rei and census are Latin translations of shay' and māl respectively, the names of the the first two powers of the unknown in Arabic.

  73. 73.

    (Regiomontanus 1537, 4th page of the oration, which is the first item in the book after the letter to the reader). Translated in (Morse 1981, 58–9).

  74. 74.

    For a contextual account of the oration, see (Swerdlow 1993).

  75. 75.

    Stedall (2012) also gives a rundown of sixteenth-century authors who name the inventors of algebra.

  76. 76.

    “Dice Benedecto la regola dellarcibra quale Guglielmo Delunis la traslato Darabo a nostra lingua & sicondo decto Guglielmo decta regola e composta da uno nome Arabo di grande intelligentia: & che alcuni dicono essere stato uno elquale nome era Geber: & Lionardo Pisano dice ch Algebra amuchabole e la interpretatione della reghola in quella lingua.” (Ghaligai 1521, fol. 71b), with corrections from the 1548 printing.

  77. 77.

    “Segue el Testo di Guglielmo. Rendiamo gratie allo altissimo cosi comincia el testo dellaghabar Arabico nella regola del Geber quale noi diciamo Arcibra:& sicondo decto Guglielmo importa 7 nomi cioe [\(\ldots \)]”.

  78. 78.

    (Stifel 1544, fol. 226b). “Diende tuo quo que consilio usus, Algebram (quam persuasisti bonis rationibus, a Gebro Astronomo, autore eius, ita esse nuncupatam) [\(\ldots \)]”

  79. 79.

    (Cardano 1545, fol. 3a), translation adapted from (Cardano 1968, 7). “Haec ars olim a Mahomete, Mosis Arabis filio initium sumpsit. Etenim huius rei locuples testis Leonartus Pisauriensis est”.

  80. 80.

    (Scheubel 1550, 1). “Porro harum regularum inventionem ascribunt Diophanto Greco scriptori, qui, ut autor est Regiomontanus in praefatione Alphragani, libris tredecim eas descripsit”.

  81. 81.

    “Le premier inuanteur de cet art, selon aucuns, fùt Geber Arabe [\(\ldots \)] Selon les autres, fùt vn Mahommet fiz de Moïse Arabe : Lequel, comme dìt Gerome Cardan Millãnoes, apres vn Leonard de Pesare [\(\ldots \)] I’è ancores vù le liure de Ian Scheubel, Mathematicien de Tubingue : lequel attribue l’inuancion de cet art a vn Diophante Grec [\(\ldots \)] je ne panse point que cet Art, ni la plus part des autres, doeuet leur inuancion a vn seul auteur.” (Peletier 1554, 1–2).

  82. 82.

    (Peucer 1556), in the middle of the book, on the first page of the chapter on algebra, titled “Logistice Regulae [\(\ldots \)]”.

  83. 83.

    “El inuentor desta arte, segun Leonardo Pisano, fue vn Maumetho hijo de Mosis Arauigo. Alfragano (come refiere Iuan de MonteRegio) dize que Diophanto, y que escriuio treze libros della. Otros dizen que el inuentor, fue vn Arauigo, dicho Geber, y que deste nombre se deriuo Algebra” (Pérez de Moya 1573, 429).

  84. 84.

    (Jayawardene 1973, 511; Christianidis & Oaks 2023, 197ff).

  85. 85.

    “Maumetto di Mosè Arabo è creduto il primo, e di lui vna operetta si vede, mà di picciol valore, e da quì credo, che uenuto sia questa uoce Algebra” (Bombelli 1572, p. 3 of the letter to the reader).

  86. 86.

    Translated by J. Winfree Smith in (Klein 1968, 318).

  87. 87.

    “Hie hebet sich an das Buch Algebrae, des grossen Arismetristens, geschrieben zu den zeithen Alexandri vnd Nectanebi, des grossen Grecken vnnd Nigromantis, geschrieben zu Ylem, dem grossen Geometer jn Egypten, jn Arabischer Sprach genant Gebra vnnd Almuchabola, das dann bey vns wirdt genant das Buch von dem Dinge der vnwissenden zall. Vnd ist aus Arabischer Sprach jn kriechisch transferirt von Archimede, vnnd aus kriechisch jn das Latein von Apuleio, vnd wird genandt bey den Welschen das Buch de la cosa, das dann aber wird gesprochen das Buch von dem ding; wann aus einem vnbekanten dinge findet man das wesen der zal vnd gantzen essentz, das dann gewesen ist die frage ze wissen. Vnnd aus disem Buch finden wir, das der Machomet in seinem Alkoran vermeldet vin disen Regeln, vnnd nennet sie auch Gebram vnd Almuchabolam. Sie werden auch gebraucht von den Indiern, vnnd nennen sie Aliabra vnd Aluoreth, das ist das Buch, das Aliabras zu den zeiten Alexandri aus Arabischer sprache jn jndische gesatzt hat, vnd wird bey jnen gesagtt das Buch Aluoreth, das ist von dem Dinge abermals, oder das Buch der Coniecturation [\(\ldots \)]”

  88. 88.

    The origin of algebra in Egypt in the time of Alexander speaks for a connection with alchemy, especially the reference to Nectanebo, the last native Egyptian pharaoh (reigned 358–340 BCE). A fictitious story in the ancient Alexander romance relates that after he was deposed by the Persians, Nectanebo traveled to Macedonia where he posed as a magician and seduced Olympias to became Alexander’s father. The German commentary mentions after this passage that (the fictional) Yles taught geometry to Euclid. Of course, there is no evidence that either Archimedes or Apuleius translated any algebra book. But Italian books were called books “of the thing (cosa)”. There is no record of any person named Aliabra who translated Arabic algebra into Sanskrit, and algebra was not called Aliabra or Aluoreth in India. The term coniecturation comes from the commented Latin text and refers to the stage of simplifying an equation. I have not seen this term applied in any other book.

  89. 89.

    (Ramus 1569, 1), translated in (Goulding 2010, 38).

  90. 90.

    (Tartaglia 1578 Part 1, 2nd page of letter “Au Lecteur”). The passage begins: “ont esté pour l’Arabie, Moyse, Mammeth son fils, qu’on dit estre inventeur de l’Algebre, Alguc, Rabbi Abraham, & Rabbi-Issac. Pour la Grece, Diophante, qu’aucuns aultres disent estre inventeur de l’Algebre, Planude, Pythagore, [\(\ldots \)]”. In medieval European legend, Alguc, also Algus or Algos, is the name of the ancient Indian philosopher who devised the decimal “Arabic” numeration system. I do not know who François Peuenel is.

  91. 91.

    (Tartaglia 1578 Part 1, fol. 2r). For Algus, see the previous footnote. Villefranche is Etienne de la Roche. I do not know who Laac is.

  92. 92.

    “De la Grande Art, dite en Arabe Algebre & Almucabale, ou Reigle de la chose, inuentée de Maumeth fils de Moïse Arabe” (Tartaglia 1578, Part 2, on the page after the title page).

  93. 93.

    “[\(\ldots \)] come furno Mercurio Termegisto philosopho, sacerdote, & Re d’Egitto: similmente Pithagora, Platone, Plotino, Aristotele, Averrois, Hypocrates, el nostro Euclide, Ptholomeo, Archimede, Appollonio Pergeo, Iordano, Vittruvio Architetto, & molti altri” (Euclid 1543, f. iiiia.38).

  94. 94.

    Translation adjusted slightly on the advice of Jan Hogendijk from (Stevin 1961 III, 599). The emphases and parentheses are Stevin’s.

  95. 95.

    “Quant à Diophante, il semble qu’en son temps les inventions de Mahomet aient seulement este cognues, comme se peult colliger de ses six premiers livres” (Stevin 1585, 268).

  96. 96.

    “Nous avons amplement faict aux constructions precedentes leurs demonstrations tant geometriques, qu’arithmetiques. Mais encore n’est pas notoire, par icelles l’occasion qui a faict inventer a Mahomet telle riegle” (Stevin 1585, 298).

  97. 97.

    (van Roomen 1597, 22–32; Bockstaele 2009). The example of “kind-crossing” at stake for this book is the use of arithmetic to prove a result or solve a problem in geometry. The capital letters in Chapter 7 representing numbers or magnitudes (or any other kind of quantifiable objects) are not an indication of any kind of algebra. They agree with the use of letters in Pappus of Alexandria’s Book II, in al-Fārisı̄, and in Jordanus de Nemore (Oaks 2018c, section 5.4). In particular, the letters are not operated on to form new expressions, and no equations are set up.

  98. 98.

    The visit is reported in (De Thou 1734, 163–4). Bockstaele (2009, 455) notes that van Roomen was not yet familiar with Viète’s algebra when he wrote his Apologia, but by 1598 he had in his possession some of Viète’s works.

  99. 99.

    Bockstaele (2009, 455) claims that “printing could not have started before 1600” but without an explanation, while Rabouin (2009, 238) agrees with Bosmans’s (1906, 269–70) estimation of 1598–99.

  100. 100.

    Alexander reigned 356–323 BCE. The first year of the 112th Olympiad was 328 BCE, which was 1909 years before 1582. The playwright Aristophanes died in 386 BCE.

  101. 101.

    “Almuchabola: Ist Arabisch und bedeut so viel als ein Buch von dem unwissenden ding Nemlich der Zahl welchs vor 1909 jahren Algebra der hocherfarn Mathematicus dem König Alexandro dedicirt, und das durch den Aristophanem welcher der zeit Nemlich in dem 1 Jahr der 112 Olympiadum Stadtvogt oder Oberster zu Athen war dem König der domalen das fïnffte jahr seiner Regierung besasz besasz zubringen lassen und derhalb ben ihm grossen gunst und gnad erlanget hat. Es wird auff Indische sprach do es noch hoch gehalten wird Aliabra ben etlichen die besser hinein in Indiam wohnen Alboreth (das ist das Buch der Coniectuation genant die Welschen heissen das libel de lacosa.

    “Es gedenckt Mahometh der Berführer Asiae dieser mysterien in seinem Alcoran und nennet sie Almuchabolam weil er seine Sect wie ben den Alten im brauch was durch die Zahlen” (Thurneisser 1583, 11), his emphases and unmatched parenthesis.

  102. 102.

    Poking around Google Books I found other books relating this basic story by different authors published in 1588, 1613, 1626, 1646, 1655, 1670, and 1795, not counting reprints.

  103. 103.

    “Primus igitur omnium qui aliquid in Algebra invenisse scribitur, fuit omnium doctiorum (quod sciam) consensu Mahumed filius Moysi” (van Roomen n.d., 7). His wording in the next sentence (not translated here) shows that he was paraphrasing Stevin (1585, 268).

  104. 104.

    (van Roomen n.d., 7). This manuscript is now lost. Hageccius (1525–1600) was a Czech physician.

  105. 105.

    “Qui hactenus de Algebra egerunt, ita Algebrica tractârunt, tamquam si pars esset Arithmeticae, cum tamen non minus Geometriae quam Arithmeticae possit accommodari. Imo demonstrationes propositionum Algebricarum quas hactenus videre contigit, omnes ex Geometria desumptae sunt; ut potus Geometriae, quam Arithmeticae debeat dici pars. Hinc etiam primus inventor Algebrae Mahumed suam Algebram fecit communem numeris & magnitudinibus [\(\ldots \)] Nos itaque maluimus Algebricam sive Analyticam scientiam revocare ad Mathesin primam, quae quantitatem universalem considerat.” (van Roomen n.d., 2).

  106. 106.

    “quae author noster, tanquam ei qui ad Algebram accedit notissima, omisit, ea nostri muneris erit hic supplere” (van Roomen n.d., 17).

  107. 107.

    “Il n’est pas possible de déterminer si Diophante fut l’inventeur de l’Algebre” (Montucla 1758 I, 315).

  108. 108.

    “Quelle que soit l’origine de l’algebre chez les Arabes, c’est une puérile opinion que celle qui en attribue l’invention à Geber, & qui prétend par-là rendre raison du nom qu’elle porte” (Montucla 1758 I, 367).

  109. 109.

    “Les plus anciens Auteurs d’Algebre chez les Arabes sont Mohammed ben-Musa & Thébit ben-Corah” (Montucla 1758 I, 368).

  110. 110.

    “Que de faits curieux, & peut-être intéressans à d’autres égards, n’y auroit-il pas à recueillir dans plusieurs de ces manuscrits! Qu’il est à regretter de ce que parmi ceux qui sont à portée de les consulter, & qui connoissent la langue dans laquelle ils sont écrits, il n’y ait personne qui ait le zele d’aller au delà di titre.” (Montucla 1758 I, 369).

  111. 111.

    Error for L.IV.21.

Bibliography

  1. Abdeljaouad M, Oaks J (2021) Al-Hawārı̄’s Essential Commentary: Arabic arithmetic in the fourteenth century. Max Planck Institute for History of Science, Berlin. Available online: https://edition-open-sources.org/sources/14/

  2. Abū Kāmil (1986) Kitāb fı̄ al-jabr wa’l-muqābala. (A facsimile edition of MS Istanbul, Kara Mustafa Paşa 379, copied in 1253 C.E. Edited by Jan P. Hogendijk.) Institute for the History of Arabic-Islamic Science, Frankfurt am Main

    Google Scholar 

  3. Abū Kāmil (2012) Algèbre et Analyse Diophantienne. Edited, translated, and commented by Roshdi Rashed. Walter de Gruyter, Berlin

    Google Scholar 

  4. Anonimo Fiorentino (1992) Regole di geometria e della cosa: Dal Codice Palatino 575 (sec. XV) della Biblioteca Nazionale di Firenze. Ed. Annalisa Simi. Servizio Editoriale dell’Università di Siena, Siena

    Google Scholar 

  5. Aradi N (2013) An unknown medieval Hebrew anonymous treatise on arithmetic. Aleph 13:235–309

    Article  Google Scholar 

  6. Benedetto da Firenze (1982) La reghola de algebra amuchabale: dal Codice L.IV.21 della Biblioteca Comunale di Siena. Ed. Lucia Salomone. Servizio Editoriale dell’Università di Siena, Siena

    Google Scholar 

  7. M\({ }^{\mathrm {o}}\) Biagio (1983) Chasi Exenplari alla Regola dell’Algibra nella Trascelta a Cura di M\({ }^{\mathrm {o}}\) Benedetto, dal Codice L.VI.21Footnote

    Error for L.IV.21.

    della Biblioteca Comunale di Siena, ed. Licia Pieraccini. Servizio Editoriale dell’Università di Siena, Siena

    Google Scholar 

  8. Bockstaele P (2009) Between Viète and Descartes: Adriaan van Roomen and the Mathesis Universalis. Archive for History of Exact Sciences 63:433–470

    Article  MathSciNet  Google Scholar 

  9. Bombelli R (1572) L’algebra, parte maggiore dell’ arimetica divisa in tre libri. Giovanni Rossi, Bologna

    Google Scholar 

  10. Bosmans H (1906) Le fragment du commentaire d’Adrien Romain sur l’Algèbre de Mahumed ben Musa el-Chowârezmî. Annales de la Société Scientifique de Bruxelles 30:267–287

    Google Scholar 

  11. Cardano G (1545) Artis magnae, sive de regulis algebraicis lib. unus. Ioh. Petreium excusum, Nurnberg

    Google Scholar 

  12. Cardano G (1968) The great art, or, the rules of algebra. Translated by T. Richard Witmer. MIT, Cambridge, MA

    Google Scholar 

  13. Christianidis J, Oaks J (2013) Practicing algebra in late antiquity: the problem-solving of Diophantus of Alexandria. Historia Mathematica 40:127–163

    Article  MathSciNet  Google Scholar 

  14. Christianidis J, Oaks J (2023) The Arithmetica of Diophantus: A complete translation and commentary. Routledge, London

    Google Scholar 

  15. Cifoletti G (1996) The creation of the history of algebra in the sixteenth century. In: Goldstein C, Gray J, Ritter J (edd) L’Europe Mathématique: Histoires, Mythes, Identités = Mathematical Europe: history, myth, identity. Éditions de la Maison des Sciences de l’Homme, Paris

    Google Scholar 

  16. Clavius C (1608) Algebra. Apud Bartholomaeum Zannettum, Roma

    Google Scholar 

  17. Crossley J, Henry AS (1990) Thus spake al-Khwārizmı̄: A translation of the text of Cambridge University Library Ms. Ii.vi.5. Historia Mathematica 17:103–131

    Article  MathSciNet  Google Scholar 

  18. Curtze M (ed) 1902. Urkunden zur Geschichte der Mathematik im Mittelalter und der Renaissance. Teubner, Leipzig

    Google Scholar 

  19. M\({ }^{\mathrm {o}}\) Dardi (2001) Aliabraa argibra: Dal manoscritto I.VII.17 della Biblioteca Comunale di Siena. Ed. Raffaella Franci. Servizio Editoriale dell’Università di Siena, Siena

    Google Scholar 

  20. De Thou J-A (1734) Histoire universelle de Jacques-Auguste De Thou depuis 1543 jusqu’en 1607, vol. 14. Londres [i.e., Paris]

    Google Scholar 

  21. Dijksterhuis FJ (2021) The wise origins of the Consten. In: Davids K, Dijksterhuis FJ, Vermij R, Stamhuis I (edd) Rethinking Stevin, Stevin rethinking: constructions of a Dutch polymath. Brill, Leiden

    Google Scholar 

  22. Diophantus (1893–95) Diophanti Alexandrini opera omnia cum Graeciis commentarii. Edidit et latine interpretatus est P. Tannery. B. G. Teubner, Leipzig

    Google Scholar 

  23. Diophantus (1959) Les six livres arithmétiques et le livre des nombres polygones. Translated by Paul Ver Eecke. Albert Blanchard, Paris

    Google Scholar 

  24. Diophantus (1986) Les Arithmétiques. Edition of the Arabic text with French translation by Roshdi Rashed. Les Belles Lettres, Paris

    Google Scholar 

  25. Euclid (1543) Euclide Megarense philosopho: solo introduttore delle scientie mathematice, trans. Tartaglia N. Venturino Roffinelli, Vinegia

    Google Scholar 

  26. al-Fārisı̄ (1994) Asās al-qawā`id fı̄ uṣūl al-Fawā'id, edited by Muṣṭafā Mawāldı̄. Ma`had al-Makhṭūṭāt al-`Arabı̄yah, Cairo

    Google Scholar 

  27. Fibonacci (1857) Scritti di Leonardo Pisano matematico del secolo decimoterzo. I. Il Liber abbaci di Leonardo Pisano, ed. Baldassare Boncompagni. Tipografia delle Scienze Matematiche e Fisiche, Roma

    Google Scholar 

  28. Fibonacci (1862) Scritti di Leonardo Pisano matematico del secolo decimoterzo. II. Practica geometriae et Opusculi, ed. Baldassare Boncompagni. Tipografia delle Scienze Matematiche e Fisiche, Roma.

    Google Scholar 

  29. Fibonacci (2002) Fibonacci’s Liber Abaci: A translation into modern English of Leonardo Pisano’s Book of Calculation, translated by L. E. Sigler. Springer, New York

    Google Scholar 

  30. Fibonacci (2008) Fibonacci’s De practica geometrie, ed. Barnabas Hughes. Springer, New York

    Google Scholar 

  31. Fibonacci (2020) Leonardi Bigolli Pisani vulgo Fibonacci Liber abbaci, ed. Enrico Giusti. Leo S. Olschki, Firenze

    Google Scholar 

  32. Folkerts M (2002) Regiomontanus’ Role in the Transmission of Mathematical Problems. In: Dold-Samplonius Y, Dauben JW, Folkerts M, Van Dalen B (edd) From China to Paris: 2000 Years Transmission of Mathematical Ideas. Franz Steiner, Stuttgart

    Google Scholar 

  33. Franci R (2003) Una traduzione in volgare dell’Al-Jabr di al-Khwarizmi (MS. Urb. Lat. 291 Biblioteca Apostolica Vaticana). In: Franci R, Pagli P, Simi A (edd) Il Sogno di Galois: Scritti di storia della matematica dedicati a Laura Toti Rigatelli per il suo 60\({ }^{\mathrm {o}}\) compleanno. Università di Siena, Siena

    Google Scholar 

  34. Ghaligai F (1521) Summa de arithmetica. B. Zucchetta, Firenze

    Google Scholar 

  35. Gori D (1984) Libro e trattato della praticha d’alcibra: dal Codice L. IV.22 della Biblioteca Comunale di Siena. Edited by Laura Toti Rigatelli. Servizio Editoriale dell’Università di Siena, Siena.

    Google Scholar 

  36. Gosselin G (1577) De arte magna. Aegidium Beys, Paris

    Google Scholar 

  37. Goulding R (2010) Defending Hypatia: Ramus, Savile, and the Renaissance rediscovery of mathematical history. Springer, Dordrecht

    Book  Google Scholar 

  38. Gutas D (1998) Greek thought, Arabic culture: The Graeco-Arabic translation movement in Baghdad and early `Abbāsid society. Routledge, London

    Book  Google Scholar 

  39. Gutas D (2006) What was there in Arabic for the Latins to receive? Remarks on the modalities of the twelfth-century translation movement in Spain. In: Speer A, Wegener L (edd) Wissen über Grenzen: Arabisches Wissen und lateinisches Mittelalter. De Gruyter, Berlin

    Google Scholar 

  40. Hissette R (1999) Guillaume de Luna a-t-il traduit Abū Kāmil? In: Endress G, Aertsen JA (edd) Averroes and the Aristotelian tradition. Sources, constitution and reception of the philosophy of Ibn Rushd (1126–1198). Proceedings of the Fourth Symposium Averroicum (Cologne, 1996). Brill, Leiden

    Google Scholar 

  41. Hogendijk JP (2003) The Geometrical Problems of Nu`aim ibn Muḥammad ibn Mūsā (ninth century). SCIAMVS 4:59–136

    MathSciNet  Google Scholar 

  42. Høyrup J (1986) Al-Khwârizmî, Ibn Turk, and the Liber Mensurationum: On the origins of Islamic algebra. Erdem 5:445–484

    Article  Google Scholar 

  43. Høyrup J (1988) Jordanus de Nemore, 13th century mathematical innovator: an essay on intellectual context, achievement, and failure. Archive for History of Exact Sciences 37:307–363

    Article  MathSciNet  Google Scholar 

  44. Høyrup J (1996) The formation of a myth: Greek mathematics — our mathematics. In: Goldstein C, Gray J, Ritter J (edd) L’Europe mathématique: histoires, mythes, identités = Mathematical Europe: history, myth, identity. Éditions de la Maison des Sciences de l’Homme, Paris

    Google Scholar 

  45. Høyrup J (2001) On a collection of geometrical riddles and their role in the shaping of four to six “algebras”. Science in Context 14:85–131

    Article  MathSciNet  Google Scholar 

  46. Høyrup J (2002) Lengths, widths, surfaces: a portrait of old Babylonian algebra and its kin. Springer, New York

    Book  Google Scholar 

  47. Høyrup J (2007) What did the abbacus teachers really do when they (sometimes) ended up doing mathematics? Filosofi og Videnskabsteori på Roskilde Universitetscenter. 3. Række: Preprints og Reprints 2007 Nr. 4

    Google Scholar 

  48. Høyrup J (2010) Hesitating progress: the slow development toward algebraic symbolization in abbacus and related manuscripts, c. 1300 to c. 1550. In: Heeffer A, Van Dyck M (edd) Philosophical Aspects of Symbolic Reasoning in Early Modern Mathematics. College Publications, London

    Google Scholar 

  49. Høyrup J (2019) Selected essays on pre- and early modern mathematical practice. Springer, Cham

    Book  Google Scholar 

  50. Hughes B (1986) Gerard of Cremona’s translation of al-Khwārizmı̄’s al-jabr: A critical edition. Mediaeval Studies 48:211–263

    Article  Google Scholar 

  51. Hughes B (1989) Robert of Chester’s Latin Translation of al-Khwārizmı̄’s al-jabr: A New Critical Edition. Franz Steiner, Stuttgart

    Google Scholar 

  52. Ibn al-Nadı̄m (2009) Kitāb al-Fihrist. Ed. by Ayman Fu'ād Sayyid. Al-Furqān Islamic Heritage Foundation, London

    Google Scholar 

  53. Ibn Khaldūn (1967) The muqaddimah: an introduction to history. Second edition, translated by Franz Rosenthal. Princeton University Press, Princeton

    Google Scholar 

  54. Jayawardene SA (1965) Rafael Bombelli, engineer-architect: Some unpublished documents of the Apostolic Camera. Isis 56:298–306.

    Article  Google Scholar 

  55. Jayawardene SA (1973) The influence of practical arithmetics on the algebra of Rafael Bombelli. Isis 64:510–523

    Article  MathSciNet  Google Scholar 

  56. Jean de Murs (1990) Le Quadripartitum Numerorum de Jean de Murs: Introduction et édition critique. Ed. Ghislaine l’Huillier. Droz, Genève

    Google Scholar 

  57. Jordanus de Nemore (1981) De numeris datis. Ed., tr. Barnabas Hughes. University of California, Berkeley

    Google Scholar 

  58. Karpinski LC (1911) The algebra of Abu Kamil Shoja‘ ben Aslam. Bibliotheca Mathematica 11.3:40–55

    Google Scholar 

  59. al-Khwārazmı̄ (1915) Robert of Chester’s Latin translation of the Algebra of al-Khowarizmi. Translated by Karpinski LC. Macmillan, New York

    Google Scholar 

  60. al-Khwārazmı̄ (1997) Die älteste lateinische Schrift über das indische Rechnen nach al-Hwārizmı̄. Edited, translated and commented by Menso Folkerts with the colaboration of Paul Kunitzsch. Bayerische Akademie der Wissenschaften, Munich

    Google Scholar 

  61. al-Khwārazmı̄ (2007) Al-Khwārizmı̄: Le Commencement de l’Algèbre. Texte établi, traduit et commenté par Roshdi Rashed. Blanchard, Paris

    Google Scholar 

  62. al-Khwārazmı̄ (2009) Al-Khwārizmı̄: The beginnings of algebra. Edited, with translation and commentary by Roshdi Rashed. SAQI, London

    Google Scholar 

  63. al-Khwārazmı̄ (2009b) El libro del Álgebra. Traducción, introducción y notas de Ricardo Moreno Castillo. Tres Cantos, Nivola

    Google Scholar 

  64. King D (1988) A medieval Arabic report on algebra before al-Khwārizmı̄. Al-Masāq 1:25–32

    Article  Google Scholar 

  65. King D (2012) The invention of algebra in Zabı̄d: Between legend and fact. In: Opwis F, Reisman D (edd) Islamic philosophy, science, culture, and religion: Studies in honor of Dimitri Gutas. Brill, Leiden

    Google Scholar 

  66. Klein J (1968) Greek mathematical thought and the origin of algebra. Translated by Eva Brann. MIT, Cambridge, MA

    Google Scholar 

  67. Lamrabet D (2014) Introduction à l’histoire des mathématiques maghrebines, 2nd edn. Driss Lamrabet, Rabat

    Google Scholar 

  68. Levey M (1966) The Algebra of Abū Kāmil: Kitāb fı̄ al-jābr wa'l-muqābala in a Commentary by Mordecai Finzi. Hebrew text, translation and commentary with special reference to the Arabic text. University of Wisconsin, Madison

    Google Scholar 

  69. Lévy T (1996) Hebrew mathematical literature in Europe (XI\({ }^{\mathrm {th}}\)–XVI\({ }^{\mathrm {th}}\) centuries). In: Goldstein C, Gray J, Ritter J (edd) L’Europe mathématique: Histoires, mythes, identités/Mathematical Europe: History, Myth, Identity. Edition de la maison des sciences de l’homme, Paris

    Google Scholar 

  70. Lévy T (2002) A newly-discovered partial Hebrew version of al-Khwārizmı̄’s Algebra. Aleph 2:225–234

    Article  Google Scholar 

  71. Lévy T (2003) L’algèbre arabe dans les textes hébraïques (I). Un ouvrage inédit d’Isaac ben Salomon al-Aḥdab (XIV\({ }^{\mathrm {e}}\) siècle). Arabic Sciences and Philosophy 13:269–301

    Article  MathSciNet  Google Scholar 

  72. Lévy T (2007) L’algèbre arabe dans les textes Hébraïques (II). Dans l’Italie des XV\({ }^{\mathrm {e}}\) et XVI\({ }^{\mathrm {e}}\) siècles, sources arabes et sources vernaculaires. Arabic Sciences and Philosophy 17:81–107

    Google Scholar 

  73. Lorch R (1993) Abū Kāmil on the Pentagon and Decagon. In: Folkerts M, Hogendijk JP (edd.) Vestigia Mathematica: Studies in medieval and early modern mathematics in honour of H.L.L. Busard. Rodopi, Amsterdam

    Google Scholar 

  74. Lorch R (2001) Greek-Arabic-Latin: the transmission of mathematical texts in the Middle Ages. Science in Context 14:313–331

    Article  MathSciNet  Google Scholar 

  75. de Luneschlos I (1646) Thesaurus Mathematicum Reseratus per Algebram Novam tam Speciebus quam Numeris Declaratam et Demonstratam cui Praefixa Universae Philosophiae Mathematicarum in primus Disciplinarum Synopsis. Cribellianis, Patavii

    Google Scholar 

  76. Malet A (2006) Renaissance notions of number and magnitude. Historia Mathematica 33:63–81

    Article  MathSciNet  Google Scholar 

  77. Massa Esteve, MR (2012) Spanish “arte mayor” in the sixteenth century. In: Rommevaux S, Spiesser M, Massa Esteve MR (edd) Pluralité de l’algèbre à la Renaissance. H. Champion, Paris

    Google Scholar 

  78. Mispar project https://mispar.ethz.ch/wiki/Main_Page, accessed September 16, 2022

  79. Miura N (1981) The algebra in the Liber Abaci of Leonardo Pisano. Historia Scientiarum 21:57–65

    MathSciNet  Google Scholar 

  80. Montucla M (1758) Histoire ses mathematiques, tome premier. Ant. Jombert, Paris

    Google Scholar 

  81. Morse, JoAnn (1981) The reception of Diophantus’ “Arithmetic” in the Renaissance. Ph.D. dissertation, Princeton University

    Google Scholar 

  82. Moyon M (2017) La restauration et la comparison, ou l’art de résoudre des équations quadratiques dans l’Europe latine. Revue d’Histoire des Mathématiques 23:233–299

    MathSciNet  Google Scholar 

  83. Moyon M (2019) The Liber Restauracionis: A newly discovered copy of a medieval algebra in Florence. Historia Mathematica 46:1–37

    Article  MathSciNet  Google Scholar 

  84. Nuñez P (1567) Libro de algebra en arithmetica y geometria. An casa de los herederos d’Arnoldo Birckman a la Gallina gorda, Anvers

    Google Scholar 

  85. Oaks J (2011) Geometry and proof in Abū Kāmil’s algebra. In: Actes du 10ème colloque Maghrébin sur l’histoire des mathématiques arabes (Tunis, 29-30-31 mai 2010). L’Association Tunisienne des Sciences Mathématiques, Tunis

    Google Scholar 

  86. Oaks, J (2011b) Al-Khayyām’s scientific revision of algebra. Suhayl: Journal for the History of the Exact and Natural Sciences in Islamic Civilisation 10:47–75. Available online: http://www.ub.edu/arab/suhayl/volums/volum10/2~ paper2Vol10.pdf

  87. Oaks J (2012) Algebraic symbolism in medieval Arabic. Philosophica 87:27–83. Available online: http://logica.ugent.be/philosophica/fulltexts/87-2.pdf

  88. Oaks J (2015) Series of problems in Arabic algebra: The example of `Alı̄ al-Sulamı̄. In: Bernard A (ed) Les Séries de Problèmes, un Genre au Carrefour des Cultures. Les Ulis: EDP Sciences. 16 p. Available online: https://www.shs-conferences.org/articles/ shsconf/abs/2015/09/shsconf-sdp~ 00005/shsconf-sdp~ 00005.html

  89. Oaks J (2018) Diophantus, al-Karajı̄, and quadratic equations. In: Sialaros M (ed) Revolutions and continuity in Greek mathematics. de Gruyter, Berlin

    Google Scholar 

  90. Oaks J (2018b) Arithmetical proofs in Arabic algebra. In: Laabid e (ed) Actes du 12\({ }^{\grave {e}}\) Colloque Maghrébin sur l’Histoire des Mathématiques Arabes: Marrakech 26 au 28 mai 2016. École Normale Supérieure, Marrakech. Available online: http://www.uindy.edu/cas/mathematics/oaks/files/oaksmarrakech.pdf.

  91. Oaks J (2018c) François Viète’s revolution in algebra. Archive for History of Exact Sciences 72:245–302

    Article  MathSciNet  Google Scholar 

  92. Oaks J (2019) Proofs and algebra in al-Fārisı̄’s commentary. Historia Mathematica 47:106–121

    Article  MathSciNet  Google Scholar 

  93. Oaks J (2023) Arithmetic and algebra. In: Brentjes, S (ed) Routledge handbook on the sciences in Islamicate societies: practices from the 2nd/8th to the 13th/19th centuries. Routledge, London

    Google Scholar 

  94. Oaks, J (forthcoming) Algebra according to early Arabic authors. In: Chemla K, Miao T (edd) A worldwide approach to the early history of algebra. Springer, Heidelberg

    Google Scholar 

  95. Oaks, J, Alkhateeb H (2005) Māl, enunciations and the prehistory of Arabic algebra. Historia Mathematica 32:400–425

    Article  MathSciNet  Google Scholar 

  96. Oaks, J, Alkhateeb H (2007) Simplifying equations in Arabic algebra. Historia Mathematica 34:45–61

    Article  MathSciNet  Google Scholar 

  97. Pacioli L (1494) Summa de arithmetica geometria proportioni & proportionalita, pontinentia de tutta lopera. Paganino de Paganini, Venetijs

    Google Scholar 

  98. Peletier J (1554) L’algebre. Ian de Tournes, Lyon

    Google Scholar 

  99. Pérez de Moya J (1573) Tratado de mathematicas en que se contienen cosas arithmetica, geometria, cosmographia, y philosophia natural. Juan Gracian, Alcala de Henares

    Google Scholar 

  100. Peucer C (1556) Logistice astronomica hexacontadon et scrupulorum sexagesimorum. Vitebergae Excudebant Haeredes Georgii Rhavv.

    Google Scholar 

  101. Piero della Francesca (1970) Trattato d’abaco. Dal Codice Ashburnhamiano 280 (359*-291*) della Biblioteca Medicea Laurenziana di Firenze. Ed. Gino Arrighi. Domus Galilaeana, Pisa

    Google Scholar 

  102. Procissi A (1954) I ‘Ragionamenti d’algebra’ di R. Canacci. Bollettino della Unione Matematica Italiana 9:300–326, 420–451

    MathSciNet  Google Scholar 

  103. Rabouin D (2009) Mathesis universalis: l’idée de \( \ll \) mathématique universelle \( \gg \) d’Aristote à Descartes. Presses Universitaires de France, Paris

    Google Scholar 

  104. Ramus P (1569) Mathematicarum, libri unus et triginta. Per Eusebium Episcopium & Nicolai Fratris haeredes, Basil

    Google Scholar 

  105. Ramus P (1586) Arithmetices libri duo, et algebrae, ed. Lazarus Schöner. De Marre and Aubry, Frankfurt.

    Google Scholar 

  106. Rashed R, Vahabzadeh B (1999) Al-Khayyām mathématicien. Blanchard, Paris

    Google Scholar 

  107. Rashed R, Vahabzadeh B (2000) Omar Khayyam, the Mathematician. Bibliotheca Persica Press, New York

    Google Scholar 

  108. Record R (1557) The whetstone of witte. J. Kyngstone, London

    Google Scholar 

  109. Regiomontanus (1537) Oratio in praelectione Alfragani. In: Schöner L (ed) Rudimenta astronomica Alfragrani. Johannes Petrejus, Nurnberg

    Google Scholar 

  110. van Roomen A (1597) Apologia pro Archimede. Wurceburgi

    Google Scholar 

  111. van Roomen A (n.d.) In Mahumedis arabis algebram prolegomena. Georg Fleishnann, Würzburg

    Google Scholar 

  112. Rose PL (1975) The Italian Renaissance of Mathematics: Studies on Humanists and Mathematicians from Petrarch to Galileo. Librairie Droz, Genève.

    Google Scholar 

  113. Rudolff C (1525) Behend unnd hubsch Rechnung durch die kunstreichen regeln Algebre, so gemeincklich die Coss genennt werden [\(\ldots \)]. Cephaleus, Argentorati

    Google Scholar 

  114. Saidan AS (1971) Tārı̄kh `ilm al-ḥisāb al-`Arabı̄. Jam`iyat `Umāl al-Maṭābi` al-Ta`āwinı̄a, `Amman

    Google Scholar 

  115. Saidan AS (1974) The arithmetic of Abū’l-Wafā'. Isis 65:367–375

    Article  MathSciNet  Google Scholar 

  116. Saidan AS (1986) Tārı̄kh `ilm al-jabr fı̄ l-`ālam al-`Arabı̄, 2 vols. Al-Majlis al-Waṭanı̄ lil-Thaqāfah wa’l-Funūn wa’l-Ādāb, Qism al-Turāth al-`Arabı̄, Kuwait

    Google Scholar 

  117. Saidan AS (1987) The Takmila fi’l-Ḥisāb of al-Baghdādı̄. In: King DA, Saliba G (edd) From deferent to equant: A volume of studies in the history of science in the ancient Near East in honor of E. S. Kennedy. New York Academy of Sciences, New York

    Google Scholar 

  118. Samsó J (2015) Al-Andalus, a bridge between Arabic and European science. Alhadra 1:101–125

    Google Scholar 

  119. Sayili A (1962) Logical Necessities in Mixed Equations by `Abd al Hamı̄d ibn Turk and the Algebra of his Time. Türk Tarih Kurumu Basimevi, Ankara

    Google Scholar 

  120. Scheubel J (1550) Evclidis Megarensis, philosophi & mathematici excellentissimi, sex libri priores, de geometricis principijs [\(\ldots \)] algebrae porro regvlae [\(\ldots \)]. Hervagius, Basil

    Google Scholar 

  121. Schub P, Levey M (1970) Indeterminate problems of Abū Kāmil. Accademia Nazionale dei Lincei, Rome

    Google Scholar 

  122. Sesiano J (1977) Les méthodes d’analyse indéterminée chez Abū Kāmil. Centaurus 21:89–105

    Article  MathSciNet  Google Scholar 

  123. Sesiano J (1982) Books IV to VII of Diophantus’ Arithmetica in the Arabic translation attributed to Qusṭā ibn Lūqā. Springer, New York

    Google Scholar 

  124. Sesiano J (1993) La version latine médiévale de l’algèbre d’Abū Kāmil. In: Folkerts M, Hogendijk JP (edd) Vestigia Mathematica: Studies in Medieval and Early Modern Mathematics in Honour of H.L.L. Busard. Rodopi, Amsterdam

    Google Scholar 

  125. Stedall J (2012) Narratives of algebra in early printed European texts. In: Rommevaux S, Speisser M, Massa Esteve MR (edd) Plutalité de l’algèbre à la Renaissance. Honoré Champion, Paris

    Google Scholar 

  126. Stevin S (1585) L’arithmetique. De l’imprimerie de Christophe Plantin, Leiden

    Google Scholar 

  127. Stevin S (1961) De wysentyt. The age of the sages. Partially reproduced with English translation. In: Pannekoek A, Crone E (edd) The principal works of Simon Stevin, Volume III: Astronomy, Navigation. C.V. Swets & Zeitlinger, Amsterdam

    Google Scholar 

  128. Stifel M (1544) Arithmetica integra. Iohan. Petreium, Nurnberg

    Google Scholar 

  129. Swerdlow NM (1993) The recovery of the exact sciences of antiquity: mathematics, astronomy, geography. In: Grafton A (ed) Rome Reborn: The Vatican Library and Renaissance culture. Library of Congress / Yale University Press, Washington / New Haven

    Google Scholar 

  130. Tartaglia N (1560) La Sesta Parte del General Trattato di Numeri, et Misure. Curtio Troiano, Venice

    Google Scholar 

  131. Tartaglia N (1578) L’arithmetique. Translated into French by Guillaume Gosselin. Chez Gilles Beys, Paris

    Google Scholar 

  132. Thābit ibn Qurra (2009) Thābit ibn Qurra : Science and Philosophy in Ninth-Century Baghdad. Edited by Roshdi Rashed. Walter de Gruyter, Berlin

    Google Scholar 

  133. Thurneisser L (1583) Onomasticum und interpretatio oder aussführliche Erklerung. Nicolaum Voltzen, Berlin

    Google Scholar 

  134. Tosca, TV (1727) Compendio mathematico: en que se contienen todas las materias mas principales de las ciencias, que tratan de la cantidad. Impr. de A. Marin, Madrid

    Google Scholar 

  135. al-Uqlı̄disı̄ (1978) The arithmetic of al-Uqlı̄disı̄: The story of Hindu-Arabic arithmetic as told in Kitab al-fusul fi al-hisab al-hindi, by Abu al-Hasan, Ahmad ibn Ibrahim al-Uqlidisi, written in Damascus in the year 341 (A.D. 952/3). Translated and annotated by A. S. Saidan. D. Reidel, Dordrecht

    Google Scholar 

  136. Ulivi E (2002) Benedetto da Firenze (1429–1479) un maestro d’abaco del XV secolo. Bollettino di storia delle scienze matematiche 22:7–243

    Google Scholar 

  137. Van Egmond W (1978) The earliest vernacular treatment of algebra: the Libro di ragioni of Paolo Gerardi (1328). Physis 20:155–189

    MathSciNet  Google Scholar 

  138. Van Egmond W (1983) The algebra of master Dardi of Pisa. Historia Mathematica 10:399–421

    Article  MathSciNet  Google Scholar 

  139. Viète F (1983) The analytic art: nine studies in algebra, geometry, and trigonometry from the Opus Restitutae Mathematicae Analyseos, seu, Algebrâ novâ by François Viète. Translated by T. Richard Witmer. Kent State University Press, Kent, Ohio

    Google Scholar 

  140. Vogel K (1985) Die übernamhe der Algebra durch das Abendland. In: Folkerts M, Lindgren U (edd) Mathemata: Festschrift für Helmuth Gericke. F. Steiner Verlag Wiesbaden, Stuttgart

    Google Scholar 

  141. Wagner R (2013) Mordekhai Finzi’s translation of Maestro Dardi’s Italian algebra. In: Fidora A, Hames HJ, Schwartz Y (edd) Latin into Hebrew: Texts and studies. Volume two: Texts in contexts. Brill, Leiden

    Google Scholar 

  142. Wagner R (2013b) Mordekhai Finzi’s translation of Maestro Dardi’s Italian algebra, a partial edition. In: Fidora A, Hames HJ, Schwartz Y (edd) Latin into Hebrew: Texts and studies. Volume two: Texts in contexts. Brill, Leiden

    Google Scholar 

  143. Wagner R (2016) Mathematics in Hebrew in Medieval Europe. In: Katz V (ed) Mathematics of Medieval Europe and North Africa. Princeton University Press, Princeton

    Google Scholar 

  144. Wartenberg I (2015) The Epistle of the Number by Ibn al-Aḥdab: The transmission of Arabic mathematics to Hebrew circles in medieval Sicily. Gorgias Press, Piscatawy, NJ

    Book  Google Scholar 

  145. Zinner E (1990) Regiomontanus: His life and works, translated by Ezra Brown. North-Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Oaks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oaks, J.A. (2024). The Legacy of Al-Khwārazmı̄ in History of Algebra. In: Zack, M., Waszek, D. (eds) Research in History and Philosophy of Mathematics. Annals of the Canadian Society for History and Philosophy of Mathematics/ Société canadienne d’histoire et de philosophie des mathématiques. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-46193-4_8

Download citation

Publish with us

Policies and ethics