Skip to main content

Supercooling During the Crystallization of Alloys in Condensed Films

  • Chapter
  • First Online:
Formation and Temperature Stability of the Liquid Phase in Thin-Film Systems

Abstract

Compared to supercooling of pure metals, the study of supercooling of alloys is complicated by a number of factors. Thus, the difference in temperatures of solidus and liquidus, which is natural for alloys, leads to some ambiguity in the numerical determination of the supercooling value. In addition, local segregation of components can be observed in real alloys. Due to the concentration dependence of the melting point, violation of the film homogeneity leads to a local change in the phase transition temperatures. In this connection, for studying the concentration dependence of supercooling of alloys, integral methods that allow obtaining average information about the processes in the sample become very effective. In particular, these are the methods based on the use of electrical resistance and the resonant frequency of a quartz oscillator. The chapter presents the results of the study of supercooling in various contact pairs. It is shown that in the contact pair (Bi–Sn)/Cu the concentration dependence of the crystallization temperature of the supercooled melt generally repeats the liquidus line, but lies significantly below it and the solidus line. This indirectly indicates the approximate constancy of wetting in the system. The results of the study of supercooling in (In–Pb)/Mo samples indicate that the relative supercooling reaches a maximum for alloys containing equal amounts of lead and indium. In the Bi–Sn system, minimal supercoolings are observed during the crystallization of the eutectic, located on one of its components. This confirms the general trend according to which the achievable supercooling decreases as the interaction in the system improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Bhattacharya, K. Chattopadhyay, Mater. Sci. Eng. A 375, 932 (2004)

    Article  Google Scholar 

  2. H. Okamoto (ed.), Desk Handbook: Phase Diagrams for Binary Alloys (ASM International, USA, 2000)

    Google Scholar 

  3. P.Y. Khan, M.M. Devi, K. Biswas, Metall. Mater. Trans. A 46(8), 3365 (2015)

    Article  CAS  Google Scholar 

  4. P. Bhattacharya, V. Bhattacharya, K. Chattopadhyay, J. Mater. Res. 17(11), 2875 (2002)

    Article  CAS  Google Scholar 

  5. P.Y. Khan, K. Biswas, J. Nanosci. Nanotechnol. 15(1), 309 (2015)

    Article  CAS  Google Scholar 

  6. N.T. Gladkikh, S.V. Dukarov, A.P. Kryshtal, V.I. Larin, V.N. Sukhov, S.I. Bogatyrenko, Poverkhnostnye yavleniya i fazovye prevrashcheniya v tonkikh plenkakh (Surface Phenomena and Phase Transformations in Thin Films) (Kharkiv University Press, Kharkiv, 2004)

    Google Scholar 

  7. N.T. Gladkikh, S.V. Dukarov, V.N. Sukhov, Z. Metallkd. 87(3), 233 (1996)

    CAS  Google Scholar 

  8. N.T. Gladkikh, S.V. Dukarov, V.N. Sukhov, Fiz. Met. Metalloved. 78(3), 87 (1994)

    CAS  Google Scholar 

  9. N.T. Gladkikh, S.P. Chizhik, V.I. Larin, L.K. Grigor’eva, V.N. Sukhov, Sov. Phys. Dokl. 30(6), 526 (1985)

    Google Scholar 

  10. N.T. Gladkikh, S.P. Chizhik, V.I. Larin, L.K. Grigor’eva, V.N. Sukhov, Sov. Phys. Dokl. 32(11) 893 (1987)

    Google Scholar 

  11. N.T. Gladkikh, S.P. Chizhik, V.I. Larin, L.K. Grigor’eva, V.N. Sukhov, N.A. Makarovskii, Russian metallurgy. Metally 5, 38 (1989)

    Google Scholar 

  12. N.T. Gladkikh, V.I. Larin, V.N. Sukhov, Rasplavy 5, 8–16 (1993)

    Google Scholar 

  13. V.N. Skokov, A.A. Dik, V.P. Koverda, V.P. Skripov, Neorganiceskie Materialy 23(9), 1477 (1987)

    CAS  Google Scholar 

  14. N. Asahi, Jpn. J. Appl. Phys. 26(7), 999 (1987)

    Article  CAS  Google Scholar 

  15. S.I. Bogatyrenko, A.A. Minenkov, A.P. Kryshtal, Vacuum 152, 1 (2018)

    Article  CAS  Google Scholar 

  16. M.M. Kolendovskii, S.I. Bogatyrenko, A.P. Kryshtal, N.T. Gladkikh, Tech. Phys. 57(6), 849 (2012)

    Article  CAS  Google Scholar 

  17. A.E.B. Presland, G.L. Price, D.L. Trimm, Surf. Sci. 29(2), 424 (1972)

    Article  CAS  Google Scholar 

  18. F.G. Yost, E.J. O’Toole, Acta Mater. 46(14), 5143 (1998)

    Article  CAS  Google Scholar 

  19. S.-W. Chen, C.-C. Lin, C. Chen, Metall. Mater. Trans. A 29(7), 1965 (1998)

    Article  Google Scholar 

  20. Z. Moser, W. Gasior, J. Pstrus, J. Electron. Mater. 30(9), 1104 (2001)

    Article  CAS  Google Scholar 

  21. Yu. Plevachuk, V. Sklyarchuk, G. Gerbeth, S. Eckert, R. Novakovic, Surf. Sci. 605(11–12), 1034 (2011)

    Google Scholar 

  22. W. Missol, Energia powierzchni rozdziału faz w metalach (Wydawnictwo Śląsk, Katowice, 1975)

    Google Scholar 

  23. A.A. Minenkov, A.P. Kryshtal, S.I. Bogatyrenko, J. Alloys Compd. 756, 50 (2018)

    Article  CAS  Google Scholar 

  24. S.I. Bogatyrenko, A.A. Minenkov, A.P. Kryshtal, Nanotechnol. 31(22), 225704 (2020)

    Article  CAS  Google Scholar 

  25. S.V. Dukarov, S.I. Petrushenko, V.M. Sukhov, R.I. Bihun, Z.V. Stasyuk, D.S. Leonov, Metallofiz. I Noveishie Tekhnologii. 39, 1069 (2017)

    Article  CAS  Google Scholar 

  26. S.V. Dukarov, S.I. Petrushenko, V.N. Sukhov, Mater. Res. Express 6(1), 016403 (2019)

    Article  Google Scholar 

  27. S.I. Petrushenko, S.V. Dukarov, V.N. Sukhov, Vacuum 122, 208 (2015)

    Article  CAS  Google Scholar 

  28. S.V. Dukarov, S.I. Petrushenko, V.N. Sukhov, R.V. Sukhov, Funct. Mater. 25(3), 601 (2018)

    Article  CAS  Google Scholar 

  29. S.I. Petrushenko, S.V. Dukarov, V.N. Sukhov, J. Nano Electron. Phys. 8(4), 04073 (2016)

    Google Scholar 

  30. J. Zhong, L.H. Zhang, Z.H. Jin, M.L. Sui, K. Lu, Acta mater. 49(15), 2897 (2001)

    Article  CAS  Google Scholar 

  31. S. Chaubey, Indian J. Eng. Mater. Sci. 15(3), 241 (2008)

    Google Scholar 

  32. S.I. Bogatyrenko, A.V. Voznyi, N.T. Gladkikh, A.P. Kryshtal, Phys. Met. Metallogr. 97(3), 273 (2004)

    Google Scholar 

  33. A.P. Kryshtal, R.V. Sukhov, A.A. Minenkov, J. Alloys Compd. 512(1), 311 (2012)

    Article  CAS  Google Scholar 

  34. N.T. Gladkikh, A.P. Kryshtal, R.V. Sukhov, Phys. Solid State 52(3), 633 (2010)

    Article  CAS  Google Scholar 

  35. A.A. Dik, V.N. Skokov, V.P. Koverda, V.P. Skripov, Melts Moscow 4(3), 153 (1991)

    Google Scholar 

  36. K.N. Tu, R.D. Thompson, Acta Metall. 30(5), 947 (1982)

    Article  CAS  Google Scholar 

  37. R.A. Gagliano, G. Ghosh, M.E. Fine, J. Electron. Mater. 31(11), 1195 (2002)

    Article  CAS  Google Scholar 

  38. D.K. Mu, S.D. McDonald, J. Read, H. Huang, K. Nogita, Curr. Opin. Solid State Mater. Sci. 20(2), 55 (2016)

    Article  CAS  Google Scholar 

  39. R.A. Lord, A. Umantsev, J. Appl. Phys. 98(6), 063525 (2005)

    Article  Google Scholar 

  40. H.-W. Miao, J.-G. Duh, Mater. Chem. Phys. 71(3), 255 (2001)

    Article  CAS  Google Scholar 

  41. J.-W. Yoon, B.-I. Noh, B.-K. Kim, C.-C. Shur, S.-B. Jung, J. Alloys Compd. 486(1–2), 142 (2009)

    Article  CAS  Google Scholar 

  42. X. Hu, T. Xu, L.M. Keer, Y. Li, X. Jiang, Mater. Sci. Eng. A 673, 167 (2016)

    Article  CAS  Google Scholar 

  43. A.A. Minenkov, S.I. Bogatyrenko, R.V. Sukhov, A.P. Kryshtal, Phys. Solid State 56, 823 (2014)

    Article  CAS  Google Scholar 

  44. A.A. Minenkov, S.I. Bogatyrenko, A.P. Kryshtal, J. Nano Electron. Phys., 6(4), 04026 (2014)

    Google Scholar 

  45. S.V. Dukarov, S.I. Petrushenko, V.N. Sukhov, Vacuum 202, 111148 (2022)

    Article  CAS  Google Scholar 

  46. O.O. Nevgasimov, S.I. Petrushenko, S.V. Dukarov, V.N. Sukhov, Low Temp. Phys. 49(4) (2023)

    Google Scholar 

  47. T. Heumann, B. Predel, Z. Metallkd. 57, 50 (1966)

    CAS  Google Scholar 

  48. A.E. Vol, I.K. Kagan, Stroenie i svojstva dvojnyh metallicheskih system (Structure and Properties of Binary Metal Systems), vol. 3 (Nauka, Moscow, 1976)

    Google Scholar 

  49. S. Dukarov, S. Petrushenko, R. Sukhov, V. Sukhov, Phys. Status Solidi (a) 220(2), 2200664 (2023)

    Article  CAS  Google Scholar 

  50. A.A. Minenkov, S.I. Bogatyrenko, R.V. Sukhov, A.P. Kryshtal, Phys. Solid State 56(4), 823 (2014)

    Article  CAS  Google Scholar 

  51. S. Bogatyrenko, A. Kryshtal, A. Kruk, O. Skryl, J. Phys. Chem. C 124(47), 25805 (2020)

    Article  CAS  Google Scholar 

  52. Y. Li, Y.T. Cheng, Int. J. Hydrog. Energy 21(4), 281 (1996)

    Article  Google Scholar 

  53. G. Guisbiers, L. Buchaillot, Nanotechnology 19(43), 435701 (2008)

    Article  CAS  Google Scholar 

  54. T.C. Tisone, J. Drobek, J. Vac. Sci. Technol. 9(1), 271 (1972)

    Article  CAS  Google Scholar 

  55. S.I. Petrushenko, S.V. Dukarov, V.N. Sukhov, Vacuum 142, 29 (2017)

    Article  CAS  Google Scholar 

  56. A. Nevgasimov, S. Dukarov, S. Petrushenko, R. Sukhov, Z. Bloshenko, V. Sukhov, 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP) (Odesa, Ukraine, 2021), p. 1. https://doi.org/10.1109/NAP51885.2021.9568560

  57. S.V. Dukarov, S.I. Petrushenko, V.N. Sukhov, Thin Solid Films 734, 138867 (2021)

    Article  CAS  Google Scholar 

  58. D.S. Kamenetskaya, Rost i Nesovershenstva Metallicheskikh Kristallov (Growth and Imperfection of Metal Crystals), ed. D.E. Ovsienko (Naukova dumka, Kyiv, 1966), p. 307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhii Petrushenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dukarov, S., Petrushenko, S., Bogatyrenko, S., Sukhov, V. (2024). Supercooling During the Crystallization of Alloys in Condensed Films. In: Formation and Temperature Stability of the Liquid Phase in Thin-Film Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-46061-6_4

Download citation

Publish with us

Policies and ethics