Skip to main content

Simulated Annealing Based Area Optimization of Multilayer Perceptron Hardware for IoT Edge Devices

  • Conference paper
  • First Online:
Internet of Things. Advances in Information and Communication Technology (IFIPIoT 2023)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 683))

Included in the following conference series:

Abstract

The deployment of highly parameterized Neural Network (NN) models on resource-constrained hardware platforms such as IoT edge devices is a challenging task due to their large size, expensive computational costs, and high memory requirements. To address this, we propose a Simulated Annealing (SA) algorithm-based NN optimization approach to generate area-optimized hardware for multilayer perceptrons on IoT edge devices. Our SA loop aims to change hidden layer weights to integer values and uses a two-step process to round new weights that are proximate to integers to reduce the hardware due to operation strength reduction, making it a perfect solution for IoT devices. Throughout the optimization process, we prioritize SA moves that do not compromise the model’s efficiency, ensuring optimal performance in a resource-constrained environment. We validate our proposed methodology on five MLP benchmarks implemented on FPGA, and we observe that the best-case savings are obtained when the amount of perturbation (p) is 10% and the number of perturbations at each temperature (N) is 10,000, keeping constant temperature reduction function (\(\alpha \)) at 0.95. For the best-case solution, the average savings in Lookup Tables (LUTs) and filpflops (FFs) are 24.83% and 25.76%, respectively, with an average model accuracy degradation of 1.64%. Our proposed SA-based NN optimization method can significantly improve the deployment of area-efficient NN models on resource-constrained IoT edge devices without compromising model accuracy, making it a promising approach for various IoT applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de Sa, J., Pereira-Leite, L.: Sisporto 2.0: a program for automated analysis of cardiotocograms. J. Maternal-Fetal Med. 9(5), 311–318 (2000)

    Google Scholar 

  2. Dal Pozzolo, A.: Adaptive Machine Learning for Credit Card Fraud detection (2015)

    Google Scholar 

  3. Detrano, R.: UCI Machine Learning Repository: Heart Disease Data Set (2019)

    Google Scholar 

  4. Fausett, L.V.: Fundamentals of Neural Networks: Architectures, Algorithms and Applications. Pearson Education India, Noida (2006)

    Google Scholar 

  5. Fisher, R.A.: UCI Machine Learning Repository: Iris Data Set (2011)

    Google Scholar 

  6. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A survey of quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630 (2021)

  7. Hu, P., Peng, X., Zhu, H., Aly, M.M.S., Lin, J.: OPQ: compressing deep neural networks with one-shot pruning-quantization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 7780–7788 (2021)

    Google Scholar 

  8. Joshi, R., Zaman, M.A., Katkoori, S.: Novel bit-sliced near-memory computing based VLSI architecture for fast sobel edge detection in IoT edge devices. In: 2020 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS), pp. 291–296. IEEE (2020)

    Google Scholar 

  9. Joshi, R., Kalyanam, L.K., Katkoori, S.: Simulated annealing based integerization of hidden weights for area-efficient IoT edge intelligence. In: 2022 IEEE International Symposium on Smart Electronic Systems (iSES), pp. 427–432 (2022). https://doi.org/10.1109/iSES54909.2022.00093

  10. Joshi, R., Kalyanam, L.K., Katkoori, S.: Area efficient VLSI ASIC implementation of multilayer perceptrons. In: 2023 International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT), pp. 1–4. IEEE (2023)

    Google Scholar 

  11. Joshi, R., Zaman, M.A., Katkoori, S.: Fast Sobel edge detection for IoT edge devices. SN Comput. Sci. 3(4), 302 (2022)

    Article  Google Scholar 

  12. Kaiming, H., Xiangyu, Z., Shaoqing, R., Jian, S.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Kalyanam, L.K., Joshi, R., Katkoori, S.: Range based hardware optimization of multilayer perceptrons with RELUs. In: 2022 IEEE International Symposium on Smart Electronic Systems (iSES), pp. 421–426 (2022). https://doi.org/10.1109/iSES54909.2022.00092

  14. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee, N., Ajanthan, T., Torr, P.H.: Snip: single-shot network pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340 (2018)

  16. Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional networks via global & dynamic filter pruning. In: IJCAI, vol. 2, p. 8. Stockholm (2018)

    Google Scholar 

  17. Mamalet, F., Garcia, C.: Simplifying ConvNets for fast learning. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7553, pp. 58–65. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33266-1_8

    Chapter  Google Scholar 

  18. Park, S., Lee, J., Mo, S., Shin, J.: Lookahead: a far-sighted alternative of magnitude-based pruning. arXiv preprint arXiv:2002.04809 (2020)

  19. Wolberg, W., Street, W., Mangasarian, O.: Breast cancer wisconsin (diagnostic). UCI Machine Learning Repository (1995)

    Google Scholar 

  20. Wu, B., et al.: Shift: a zero flop, zero parameter alternative to spatial convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9127–9135 (2018)

    Google Scholar 

  21. Yu, R., et al.: NISP: pruning networks using neuron importance score propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9194–9203 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joshi, R., Kalyanam, L.K., Katkoori, S. (2024). Simulated Annealing Based Area Optimization of Multilayer Perceptron Hardware for IoT Edge Devices. In: Puthal, D., Mohanty, S., Choi, BY. (eds) Internet of Things. Advances in Information and Communication Technology. IFIPIoT 2023. IFIP Advances in Information and Communication Technology, vol 683. Springer, Cham. https://doi.org/10.1007/978-3-031-45878-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45878-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45877-4

  • Online ISBN: 978-3-031-45878-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics