Skip to main content

Improvement in Multi-resident Activity Recognition System in a Smart Home Using Activity Clustering

  • Conference paper
  • First Online:
Internet of Things. Advances in Information and Communication Technology (IFIPIoT 2023)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 683))

Included in the following conference series:

  • 288 Accesses

Abstract

Human Activity Recognition (HAR) integrates ambient assisted living (AAL), leading to smart home automation for monitoring activities, healthcare, fall detection, etc. Various researchers have proposed a single-resident HAR system for ambient-sensor based smart home data, which is simple, and single-resident is not always the case. Multi-resident recognition is slightly complex and time-consuming. The researchers have made several efforts to generate benchmark datasets, such as CASAS, ARAS, vanKasteren, etc., for baseline comparison and performance analysis. However, these datasets have certain limitations, such as data association, annotation scarcity, computational cost, and even with data collection itself. This paper profoundly analyzed these limitations and manually clustered the activity labels to record the improvement in the performance of the system in terms of both recognition rate and computational time on the ARAS dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianchi, V., Bassoli, M., Lombardo, G., Fornacciari, P., Mordonini, M., De Munari, I.: IoT wearable sensor and deep learning: an integrated approach for personalized human activity recognition in a smart home environment. IEEE Internet Things J. 6(5), 8553–8562 (2019). https://doi.org/10.1109/jiot.2019.2920283

    Article  Google Scholar 

  2. Sharma, V., Gupta, M., Pandey, A.K., Mishra, D., Kumar, A.: A review of deep learning-based human activity recognition on benchmark video datasets. Appl. Artif. Intell. 36(1), 2093705 (2022). https://doi.org/10.1080/08839514.2022.2093705

    Article  Google Scholar 

  3. Almeida, A., Mulero, R., Rametta, P., Urošević, V., Andrić, M., Patrono, L.: A critical analysis of an IoT-aware AAL system for elderly monitoring. Futur. Gener. Comput. Syst. 97, 598–619 (2019). https://doi.org/10.1016/j.future.2019.03.019

    Article  Google Scholar 

  4. Gupta, N., Gupta, S.K., Pathak, R.K., Jain, V., Rashidi, P., Suri, J.S.: Human activity recognition in artificial intelligence framework: a narrative review. Artif. Intell. Rev. 55(6), 4755–4808 (2022)

    Article  Google Scholar 

  5. Anikwe, C.V., et al.: Mobile and wearable sensors for data-driven health monitoring system: state-of-the-art and future prospect. Expert Syst. Appl. 202, 117362 (2022). https://doi.org/10.1016/j.eswa.2022.117362

    Article  Google Scholar 

  6. Babangida, L., Perumal, T., Mustapha, N., Yaakob, R.: Internet of things (IoT) based activity recognition strategies in smart homes: a review. IEEE Sens. J. 22(9), 8327–8336 (2022). https://doi.org/10.1109/jsen.2022.3161797

    Article  Google Scholar 

  7. Alemdar, H., Durmaz Incel, O., Ertan, H., Ersoy, C.: ARAS human activity datasets in multiple homes with multiple residents. In: Proceedings of the ICTs for Improving Patients Rehabilitation Research Techniques (2013). https://doi.org/10.4108/icst.pervasivehealth.2013.252120

  8. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., Liu, Y.: Deep learning for sensor-based human activity recognition. ACM Comput. Surv. 54(4), 1–40 (2021). https://doi.org/10.1145/3447744

    Article  Google Scholar 

  9. Shiri, F.M., Perumal, T., Mustapha, N., Mohamed, R., Ahmadon, M.A.B., Yamaguchi, S.: A survey on multi-resident activity recognition in smart environments. arXiv preprint: arXiv:2304.12304 (2023)

  10. Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: CASAS: a smart home in a box. Computer 46(7), 62–69 (2013). https://doi.org/10.1109/mc.2012.328

    Article  Google Scholar 

  11. van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Human activity recognition from wireless sensor network data: benchmark and software. In: Chen, L., Nugent, C., Biswas, J., Hoey, J. (eds.) Activity Recognition in Pervasive Intelligent Environments. Atlantis Ambient and Pervasive Intelligence, vol. 4. Atlantis Press, Amsterdam (2011). https://doi.org/10.2991/978-94-91216-05-3_8

    Chapter  Google Scholar 

  12. De-La-Hoz-Franco, E., Bernal Monroy, E., Ariza-Colpas, P., Mendoza-Palechor, F., Espinilla, M.: UJA human activity recognition multi-occupancy dataset. In: Proceedings of the 54th Hawaii International Conference on System Sciences (2021). https://doi.org/10.24251/hicss.2021.236

  13. Ramos, R.G., Domingo, J.D., Zalama, E., Gómez-García-Bermejo, J., López, J.: SDHAR-HOME: a sensor dataset for human activity recognition at home. Sensors 22(21), 8109 (2022). https://doi.org/10.3390/s22218109

    Article  Google Scholar 

  14. Arrotta, L., Bettini, C., Civitarese, G.: The MARBLE dataset: multi-inhabitant activities of daily living combining wearable and environmental sensors data. In: Hara, T., Yamaguchi, H. (eds.) MobiQuitous 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 419, pp. 451–468. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94822-1_25

    Chapter  Google Scholar 

  15. Chen, D., Yongchareon, S., Lai, E.M.-K., Yu, J., Sheng, Q.Z., Li, Y.: Transformer with bidirectional GRU for nonintrusive, sensor-based activity recognition in a multiresident environment. IEEE Internet Things J. 9(23), 23716–23727 (2022). https://doi.org/10.1109/jiot.2022.3190307

    Article  Google Scholar 

  16. Lentzas, A., Dalagdi, E., Vrakas, D.: Multilabel classification methods for human activity recognition: a comparison of algorithms. Sensors 22(6), 2353 (2022). https://doi.org/10.3390/s22062353

    Article  Google Scholar 

  17. Natani, A., Sharma, A., Peruma, T., Sukhavasi, S.: Deep learning for multi-resident activity recognition in ambient sensing smart homes. In: 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE) (2019). https://doi.org/10.1109/gcce46687.2019.9015212

  18. Jethanandani, M., Sharma, A., Perumal, T., Chang, J.-R.: Multi-label classification based ensemble learning for human activity recognition in smart home. Internet Things 12, 100324 (2020). https://doi.org/10.1016/j.iot.2020.100324

    Article  Google Scholar 

  19. Natani, A., Sharma, A., Perumal, T.: Sequential neural networks for multi-resident activity recognition in ambient sensing smart homes. Appl. Intell. 51(8), 6014–6028 (2021). https://doi.org/10.1007/s10489-020-02134-z

    Article  Google Scholar 

  20. Ramanujam, E., Perumal, T.: MLMO-HSM: multi-label multi-output hybrid sequential model for multi-resident smart home activity recognition. J. Ambient. Intell. Humaniz. Comput. 14(3), 2313–2325 (2023)

    Article  Google Scholar 

  21. Perumal, T., Ramanujam, E., Suman, S., Sharma, A., Singhal, H.: Internet of things centric-based multiactivity recognition in smart home environment. IEEE Internet Things J. 10(2), 1724–1732 (2023). https://doi.org/10.1109/jiot.2022.3209970

    Article  Google Scholar 

  22. The multilayer perceptron. Neural Computing - An Introduction (1990). https://doi.org/10.1201/9781420050431.ch4

  23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  24. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014). https://doi.org/10.3115/v1/d14-1179

  25. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint: arXiv:1511.08458 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ramanujam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramanujam, E., Kalimuthu, S., Harshavardhan, B.V., Perumal, T. (2024). Improvement in Multi-resident Activity Recognition System in a Smart Home Using Activity Clustering. In: Puthal, D., Mohanty, S., Choi, BY. (eds) Internet of Things. Advances in Information and Communication Technology. IFIPIoT 2023. IFIP Advances in Information and Communication Technology, vol 683. Springer, Cham. https://doi.org/10.1007/978-3-031-45878-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45878-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45877-4

  • Online ISBN: 978-3-031-45878-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics