Skip to main content

Metadata Improves Segmentation Through Multitasking Elicitation

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer (DART 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14293))

Included in the following conference series:

  • 266 Accesses

Abstract

Metainformation is a common companion to biomedical images. However, this potentially powerful additional source of signal from image acquisition has had limited use in deep learning methods, for semantic segmentation in particular. Here, we incorporate metadata by employing a channel modulation mechanism in convolutional networks and study its effect on semantic segmentation tasks. We demonstrate that metadata as additional input to a convolutional network can improve segmentation results while being inexpensive in implementation as a nimble add-on to popular models. We hypothesize that this benefit of metadata can be attributed to facilitating multitask switching. This aspect of metadata-driven systems is explored and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, M.A.S., et al.: ArtSeg: rapid artifact segmentation and removal in brightfield cell microscopy images, January 2022

    Google Scholar 

  2. Ali, M.A.S., Misko, O., Salumaa, S.O., Papkov, M., Palo, K., Fishman, D., Parts, L.: Evaluating very deep convolutional neural networks for nucleus segmentation from brightfield cell microscopy images. SLAS Discov. 26(9), 1125–1137 (2021)

    Article  Google Scholar 

  3. Amer, A., Ye, X., Zolgharni, M., Janan, F.: ResDUnet: residual dilated UNet for left ventricle segmentation from echocardiographic images. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2020, 2019–2022 (2020)

    Google Scholar 

  4. Beucher, S.: Use of watersheds in contour detection. In: Proceedings of International Workshop on Image Processing, Sept. 1979, pp. 17–21 (1979)

    Google Scholar 

  5. Bhalgat, Y., Shah, M., Awate, S.: Annotation-cost minimization for medical image segmentation using suggestive mixed supervision fully convolutional networks, December 2018

    Google Scholar 

  6. Brocal, G.M., Peeters, G.: Conditioned-U-Net: introducing a control mechanism in the U-Net for multiple source separations. In: Proceedings of the 20th International Society for Music Information Retrieval Conference. Zenodo (2019)

    Google Scholar 

  7. De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.C.: Modulating early visual processing by language. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  8. Georgiou, T., Liu, Y., Chen, W., Lew, M.: A survey of traditional and deep learning-based feature descriptors for high dimensional data in computer vision. Int. J. Multimed. Inf. Retrieval 9(3), 135–170 (2020)

    Article  Google Scholar 

  9. Gessert, N., Nielsen, M., Shaikh, M., Werner, R., Schlaefer, A.: Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data. MethodsX 7, 100864 (2020)

    Article  Google Scholar 

  10. Greenspan, H., van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  11. Gros, C., Lemay, A., Vincent, O., Rouhier, L., Bourget, M.H., Bucquet, A., Cohen, J., Cohen-Adad, J.: Ivadomed: a medical imaging deep learning toolbox. J. Open Source Softw. 6(58), 2868 (2021)

    Article  Google Scholar 

  12. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. Med. Image Anal. 67, 101821 (2021)

    Article  Google Scholar 

  13. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)

    Article  Google Scholar 

  14. Kawahara, J., Daneshvar, S., Argenziano, G., Hamarneh, G.: 7-point checklist and skin lesion classification using Multi-Task Multi-Modal neural nets. IEEE J. Biomed. Health Inform., April 2018

    Google Scholar 

  15. Khan, S., Sajjad, M., Hussain, T., Ullah, A., Imran, A.S.: A review on traditional machine learning and deep learning models for WBCs classification in blood smear images. IEEE Access 9, 10657–10673 (2021)

    Article  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, December 2014

    Google Scholar 

  17. Lemay, A., Gros, C., Vincent, O., Liu, Y., Cohen, J.P., Cohen-Adad, J.: Benefits of linear conditioning for segmentation using metadata. In: Heinrich, M., Dou, Q., de Bruijne, M., Lellmann, J., Schläfer, A., Ernst, F. (eds.) Proceedings of the Fourth Conference on Medical Imaging with Deep Learning. Proceedings of Machine Learning Research, vol. 143, pp. 416–430. PMLR (2021)

    Google Scholar 

  18. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  19. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  20. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  21. Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.: FiLM: Visual reasoning with a general conditioning layer. AAAI 32(1), April 2018

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Roy, S.K., Dubey, S.R., Chatterjee, S., Chaudhuri, B.B.: FuSENet: fused squeeze-and-excitation network for spectral-spatial hyperspectral image classification (2020)

    Google Scholar 

  24. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472, March 2017

    Google Scholar 

  25. Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: scikit-image: image processing in python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  26. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was funded by Revvity, Inc. (previously known as PerkinElmer Inc., VLTAT19682), and Wellcome Trust (206194). We thank High Performance Computing Center of the Institute of Computer Science at the University of Tartu for the provided computing power.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iaroslav Plutenko .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 512 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plutenko, I., Papkov, M., Palo, K., Parts, L., Fishman, D. (2024). Metadata Improves Segmentation Through Multitasking Elicitation. In: Koch, L., et al. Domain Adaptation and Representation Transfer. DART 2023. Lecture Notes in Computer Science, vol 14293. Springer, Cham. https://doi.org/10.1007/978-3-031-45857-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45857-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45856-9

  • Online ISBN: 978-3-031-45857-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics