Skip to main content

ARHNet: Adaptive Region Harmonization for Lesion-Aware Augmentation to Improve Segmentation Performance

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14349))

Included in the following conference series:

  • 534 Accesses

Abstract

Accurately segmenting brain lesions in MRI scans is critical for providing patients with prognoses and neurological monitoring. However, the performance of CNN-based segmentation methods is constrained by the limited training set size. Advanced data augmentation is an effective strategy to improve the model’s robustness. However, they often introduce intensity disparities between foreground and background areas and boundary artifacts, which weakens the effectiveness of such strategies. In this paper, we propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic. In particular, we propose an Adaptive Region Harmonization (ARH) module to dynamically align foreground feature maps to the background with an attention mechanism. We demonstrate the efficacy of our method in improving the segmentation performance using real and synthetic images. Experimental results on the ATLAS 2.0 dataset show that ARHNet outperforms other methods for image harmonization tasks, and boosts the down-stream segmentation performance. Our code is publicly available at https://github.com/King-HAW/ARHNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)

  2. Chen, S., Dobriban, E., Lee, J.H.: A group-theoretic framework for data augmentation. J. Mach. Learn. Res. 21(1), 9885–9955 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Cong, W., et al.: Dovenet: deep image harmonization via domain verification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8394–8403 (2020)

    Google Scholar 

  4. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918–2928 (2021)

    Google Scholar 

  5. Huo, J., et al.: Mapping: model average with post-processing for stroke lesion segmentation. arXiv preprint arXiv:2211.15486 (2022)

  6. Huo, J., et al.: Brain lesion synthesis via progressive adversarial variational auto-encoder. In: Zhao, C., Svoboda, D., Wolterink, J.M., Escobar, M. (eds.) SASHIMI 2022. LNCS, vol. 13570, pp. 101–111. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16980-9_10

    Chapter  Google Scholar 

  7. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  8. Liew, S.L., et al.: A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. Sci. Data 9(1), 320 (2022)

    Article  Google Scholar 

  9. Lim, J.H., Ye, J.C.: Geometric GAN. arXiv preprint arXiv:1705.02894 (2017)

  10. Ling, J., Xue, H., Song, L., Xie, R., Gu, X.: Region-aware adaptive instance normalization for image harmonization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9361–9370 (2021)

    Google Scholar 

  11. Liu, X., et al.: MSDF-net: multi-scale deep fusion network for stroke lesion segmentation. IEEE Access 7, 178486–178495 (2019)

    Article  Google Scholar 

  12. Liu, Y., Zhu, Z., Bai, X.: Wdnet: watermark-decomposition network for visible watermark removal. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3685–3693 (2021)

    Google Scholar 

  13. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  14. Oktay, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  15. Ouyang, X., Cheng, Y., Jiang, Y., Li, C.L., Zhou, P.: Pedestrian-synthesis-GAN: generating pedestrian data in real scene and beyond. arXiv preprint arXiv:1804.02047 (2018)

  16. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  17. Pérez-García, F., Sparks, R., Ourselin, S.: Torchio: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Programs Biomed. 208, 106236 (2021)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  20. Wan, J., Liu, Y., Wei, D., Bai, X., Xu, Y.: Super-BPD: super boundary-to-pixel direction for fast image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9253–9262 (2020)

    Google Scholar 

  21. Wei, W., et al.: Adversarial examples in deep learning: characterization and divergence. arXiv preprint arXiv:1807.00051 (2018)

  22. Zhang, X., et al.: CarveMix: a simple data augmentation method for brain lesion segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 196–205. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_19

    Chapter  Google Scholar 

  23. Zhang, Y., Wu, J., Liu, Y., Chen, Y., Wu, E.X., Tang, X.: Mi-unet: multi-inputs unet incorporating brain parcellation for stroke lesion segmentation from t1-weighted magnetic resonance images. IEEE J. Biomed. Health Inform. 25(2), 526–535 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Centre for Doctoral Training in Surgical and Interventional Engineering at King’s College London; King’s-China Scholarship Council PhD Scholarship programme (K-CSC); and the Engineering and Physical Sciences Research Council Doctoral Training Partnership (EPSRC DTP) grant EP/T517963/1. This publication represents, in part, independent research commissioned by the Wellcome Innovator Award [218380/Z/19/Z]. The views expressed in this publication are those of the authors and not necessarily those of the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayu Huo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huo, J., Liu, Y., Ouyang, X., Granados, A., Ourselin, S., Sparks, R. (2024). ARHNet: Adaptive Region Harmonization for Lesion-Aware Augmentation to Improve Segmentation Performance. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics