Skip to main content

Evidential Generative Adversarial Networks for Handling Imbalanced Learning

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14294))

  • 165 Accesses

Abstract

The predictive performance of machine learning models tends to deteriorate in the presence of class imbalance. Multiple strategies have been proposed to address this issue. A popular strategy consists of oversampling the minority class. Classic approaches such as SMOTE utilize techniques like nearest neighbor search and linear interpolation, which can pose difficulties when dealing with datasets that have a large number of dimensions and intricate data distributions. As a way to create synthetic examples in the minority class, Generative Adversarial Networks (GANs) have been suggested as an alternative technique due to their ability to simulate complex data distributions. However, most GAN-based oversampling methods tend to ignore data uncertainty. In this paper, we propose a novel GAN-based oversampling method using evidence theory. An auxiliary evidential classifier is incorporated in the GAN architecture in order to guide the training process of the generative model. The objective is to push GAN to generate minority objects at the borderline of the minority class, near difficult-to-classify objects. Through extensive analysis, we demonstrate that the proposed approach provides better performance, compared to other popular methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://archive.ics.uci.edu/ml/datasets.

  2. 2.

    https://www.kaggle.com/competitions/pakdd2010-dataset.

  3. 3.

    https://github.com/faresGr/code-evidential-gan.

References

  1. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  2. Aung, M.H., Seluka, P.T., Fuata, J.T.R., Tikoisuva, M.J., Cabealawa, M.S., Nand, R.: Random forest classifier for detecting credit card fraud based on performance metrics. In: 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), pp. 1–6 (2020). https://doi.org/10.1109/CSDE50874.2020.9411563

  3. Barandela, R., Valdovinos, R.M., Sánchez, J.S.: New applications of ensembles of classifiers. Pattern Anal. Appl. 6(3), 245–256 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  7. Chen, J., Pi, D., Wu, Z., Zhao, X., Pan, Y., Zhang, Q.: Imbalanced satellite telemetry data anomaly detection model based on Bayesian LSTM. Acta Astronaut. 180, 232–242 (2021)

    Article  Google Scholar 

  8. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  9. Cui, J., Zong, L., Xie, J., Tang, M.: A novel multi-module integrated intrusion detection system for high-dimensional imbalanced data. Appl. Intell. 53(1), 272–288 (2023)

    Article  Google Scholar 

  10. Dempster, A.P.: A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B (Methodol.) 30(2), 205–232 (1968)

    MathSciNet  MATH  Google Scholar 

  11. Engelmann, J., Lessmann, S.: Conditional Wasserstein GAN-based oversampling of tabular data for imbalanced learning. Expert Syst. Appl. 174, 114582 (2021)

    Article  Google Scholar 

  12. Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Learning from Imbalanced Data Sets. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98074-4

    Book  Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  14. Grina, F., Elouedi, Z., Lefevre, E.: Re-sampling of multi-class imbalanced data using belief function theory and ensemble learning. Int. J. Approx. Reason. 156, 1–15 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  16. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  17. Jøsang, A.: Subjective Logic: A Formalism for Reasoning Under Uncertainty. Artificial Intelligence: Foundations, Theory, and Algorithms, 1st ed. Springer Publishing Company, Cham (2016). Incorporated, https://doi.org/10.1007/978-3-319-42337-1

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  19. Koziarski, M., Bellinger, C., Woźniak, M.: RB-CCR: radial-based combined cleaning and resampling algorithm for imbalanced data classification. Mach. Learn. 110, 3059–3093 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. arXiv preprint arXiv:1711.09325 (2017)

  21. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(1), 559–563 (2017)

    Google Scholar 

  22. Li, D., Zheng, C., Zhao, J., Liu, Y.: Diagnosis of heart failure from imbalance datasets using multi-level classification. Biomed. Signal Process. Control 81, 104538 (2023)

    Article  Google Scholar 

  23. Li, X., Metsis, V., Wang, H., Ngu, A.H.H.: TTS-GAN: a transformer-based time-series generative adversarial network. In: Michalowski, M., Abidi, S.S.R., Abidi, S. (eds.) Artificial Intelligence in Medicine. AIME 2022. LNCS, vol. 13263, pp. 133–143. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09342-5_13

  24. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  25. Mottini, A., Lheritier, A., Acuna-Agost, R.: Airline passenger name record generation using generative adversarial networks. arXiv preprint arXiv:1807.06657 (2018)

  26. Mroueh, Y., Sercu, T.: Fisher GAN. Adv. Neural. Inf. Process. Syst. 30, 2513–2523 (2017)

    Google Scholar 

  27. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: International Conference on Machine Learning, pp. 2642–2651. PMLR (2017)

    Google Scholar 

  28. Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., Kim, Y.: Data synthesis based on generative adversarial networks. arXiv preprint arXiv:1806.03384 (2018)

  29. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  30. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  32. Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University Press, Princeton (1976)

    Google Scholar 

  33. Smets, P.: The transferable belief model for quantified belief representation. In: Smets, P. (ed.) Quantified Representation of Uncertainty and Imprecision. HDRUMS, vol. 1, pp. 267–301. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-017-1735-9_9

    Chapter  MATH  Google Scholar 

  34. Torbunov, D., et al.: UVCGAN: unet vision transformer cycle-consistent GAN for unpaired image-to-image translation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 702–712 (2023)

    Google Scholar 

  35. Vuttipittayamongkol, P., Elyan, E., Petrovski, A.: On the class overlap problem in imbalanced data classification. Knowl.-Based Syst. 212 (2020)

    Google Scholar 

  36. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions. In: Proceedings of the ADKDD’17, pp. 1–7 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fares Grina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grina, F., Elouedi, Z., Lefevre, E. (2024). Evidential Generative Adversarial Networks for Handling Imbalanced Learning. In: Bouraoui, Z., Vesic, S. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2023. Lecture Notes in Computer Science(), vol 14294. Springer, Cham. https://doi.org/10.1007/978-3-031-45608-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45608-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45607-7

  • Online ISBN: 978-3-031-45608-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics