Skip to main content

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 332 Accesses

Abstract

Endovascular thrombectomy for stroke has become an integral part of the management of acute ischemic stroke. This chapter discusses mechanical thrombectomy and pharmacological thrombolysis. Patient selection, technical issues, and post-procedure care are covered. The appendix covers imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powers WJ, Derdeyn CP, Biller J, et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(10):3020–35. https://doi.org/10.1161/STR.0000000000000074.

    Article  CAS  PubMed  Google Scholar 

  2. Berkhemer OA, Fransen PS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20. https://doi.org/10.1056/NEJMoa1411587.

    Article  CAS  PubMed  Google Scholar 

  3. van den Berg LA, Dijkgraaf MG, Berkhemer OA, et al. Two-year outcome after endovascular treatment for acute ischemic stroke. N Engl J Med. 2017;376(14):1341–9. https://doi.org/10.1056/NEJMoa1612136.

    Article  PubMed  Google Scholar 

  4. Al-Ali F, Berkhemer OA, Yousman WP, et al. The capillary index score as a marker of viable cerebral tissue: proof of concept-the capillary index score in the MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands) trial. Stroke. 2016;47(9):2286–91. https://doi.org/10.1161/STROKEAHA.116.013513.

    Article  PubMed  Google Scholar 

  5. Grotta JC, Hacke W. Stroke neurologist's perspective on the new endovascular trials. Stroke. 2015;46(6):1447–52. https://doi.org/10.1161/STROKEAHA.115.008384.

    Article  PubMed  Google Scholar 

  6. Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30. https://doi.org/10.1056/NEJMoa1414905.

    Article  CAS  PubMed  Google Scholar 

  7. Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306. https://doi.org/10.1056/NEJMoa1503780.

    Article  CAS  PubMed  Google Scholar 

  8. Saver JL, Goyal M, Bonafe A, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95. https://doi.org/10.1056/NEJMoa1415061.

    Article  CAS  PubMed  Google Scholar 

  9. Campbell BC, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18. https://doi.org/10.1056/NEJMoa1414792.

    Article  CAS  PubMed  Google Scholar 

  10. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31. https://doi.org/10.1016/S0140-6736(16)00163-X.

    Article  PubMed  Google Scholar 

  11. Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18. https://doi.org/10.1056/NEJMoa1713973.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21. https://doi.org/10.1056/NEJMoa1706442.

    Article  PubMed  Google Scholar 

  13. Yoshimura S, Sakai N, Yamagami H, et al. Endovascular therapy for acute stroke with a large ischemic region. N Engl J Med. 2022;386(14):1303–13. https://doi.org/10.1056/NEJMoa2118191.

    Article  PubMed  Google Scholar 

  14. Sarraj A, Hassan AE, Abraham MG, et al. Trial of endovascular thrombectomy for large ischemic strokes. N Engl J Med. 2023; https://doi.org/10.1056/NEJMoa2214403.

  15. Huo X, Ma G, Tong X, et al. Trial of endovascular therapy for acute ischemic stroke with large infarct. N Engl J Med. 2023; https://doi.org/10.1056/NEJMoa2213379.

  16. Generalized efficacy of t-PA for acute stroke. Subgroup analysis of the NINDS t-PA Stroke Trial. Stroke. 1997;28(11):2119–25. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9368551).

  17. Marler JR, Tilley BC, Lu M, et al. Early stroke treatment associated with better outcome: the NINDS rt-PA stroke study. Neurology. 2000;55(11):1649–55. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11113218).

    Article  CAS  PubMed  Google Scholar 

  18. Steiner T, Bluhmki E, Kaste M, et al. The ECASS 3-hour cohort. Secondary analysis of ECASS data by time stratification. ECASS Study Group. European Cooperative Acute Stroke Study. Cerebrovasc Dis. 1998;8(4):198–203. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9684058).

    Article  CAS  PubMed  Google Scholar 

  19. Hacke W, Donnan G, Fieschi C, et al. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. 2004;363(9411):768–74. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15016487).

    Article  PubMed  Google Scholar 

  20. Mazighi M, Meseguer E, Labreuche J, et al. Dramatic recovery in acute ischemic stroke is associated with arterial recanalization grade and speed. Stroke. 2012;43(11):2998–3002. https://doi.org/10.1161/STROKEAHA.112.658849.

    Article  PubMed  Google Scholar 

  21. Ribo M, Molina CA, Cobo E, et al. Association between time to reperfusion and outcome is primarily driven by the time from imaging to reperfusion. Stroke. 2016;47(4):999–1004. https://doi.org/10.1161/STROKEAHA.115.011721.

    Article  PubMed  Google Scholar 

  22. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–418. https://doi.org/10.1161/STR.0000000000000211.

    Article  PubMed  Google Scholar 

  23. Sagar G, Riley P, Vohrah A. Is admission chest radiography of any clinical value in acute stroke patients? Clin Radiol. 1996;51(7):499–502. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8689826).

    Article  CAS  PubMed  Google Scholar 

  24. del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, Gent M. PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT Investigators. Prolyse in acute cerebral thromboembolism. Stroke. 1998;29(1):4–11. (http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=9445320)

    Article  PubMed  Google Scholar 

  25. Furlan A, Higashida R, Wechsler L, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA. 1999;282(21):2003–11.

    Article  CAS  PubMed  Google Scholar 

  26. Eckert B, Kucinski T, Neumaier-Probst E, Fiehler J, Rother J, Zeumer H. Local intra-arterial fibrinolysis in acute hemispheric stroke: effect of occlusion type and fibrinolytic agent on recanalization success and neurological outcome. Cerebrovasc Dis. 2003;15(4):258–63. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12686789).

    Article  CAS  PubMed  Google Scholar 

  27. Davydov L, Cheng JW. Tenecteplase: a review. Clin Ther. 2001;23(7):982–97; discussion 981. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11519775).

    Article  CAS  PubMed  Google Scholar 

  28. Hoffmeister HM, Jur M, Ruf-Lehmann M, Helber U, Heller W, Seipel L. Endothelial tissue-type plasminogen activator release in coronary heart disease: transient reduction in endothelial fibrinolytic reserve in patients with unstable angina pectoris or acute myocardial infarction. J Am Coll Cardiol. 1998;31(3):547–51. (http://www.ncbi.nlm.nih.gov/pubmed/9502633).

    Article  CAS  PubMed  Google Scholar 

  29. Haley EC Jr, Lyden PD, Johnston KC, Hemmen TM, the TNKiSI. A pilot dose-escalation safety study of tenecteplase in acute ischemic stroke. Stroke. 2005;36(3):607–12. https://doi.org/10.1161/01.STR.0000154872.73240.e9.

    Article  CAS  PubMed  Google Scholar 

  30. Haley EC, Thompson JLP, Grotta JC, et al. Phase IIB/III trial of tenecteplase in acute ischemic stroke. Stroke. 2010;41(4):707–11. https://doi.org/10.1161/strokeaha.109.572040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Warach SJ, Dula AN, Milling TJ Jr. Tenecteplase thrombolysis for acute ischemic stroke. Stroke. 2020;51(11):3440–51. https://doi.org/10.1161/STROKEAHA.120.029749.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Campbell BCV, Mitchell PJ, Churilov L, et al. Effect of intravenous tenecteplase dose on cerebral reperfusion before thrombectomy in patients with large vessel occlusion ischemic stroke: the EXTEND-IA TNK part 2 randomized clinical trial. JAMA. 2020;323(13):1257–65. https://doi.org/10.1001/jama.2020.1511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adams HP Jr, Adams RJ, Brott T, et al. Guidelines for the early management of patients with ischemic stroke: a scientific statement from the Stroke Council of the American Stroke Association. Stroke. 2003;34(4):1056–83. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12677087).

    Article  PubMed  Google Scholar 

  34. Winkler DT, Fluri F, Fuhr P, et al. Thrombolysis in stroke mimics: frequency, clinical characteristics, and outcome. Stroke. 2009;40(4):1522–5. (In Eng). https://doi.org/10.1161/STROKEAHA.108.530352.

    Article  PubMed  Google Scholar 

  35. Tsivgoulis G, Alexandrov AV, Chang J, et al. Safety and outcomes of intravenous thrombolysis in stroke mimics: a 6-year, single-care center study and a pooled analysis of reported series. Stroke. 2011;42(6):1771–4. (In Eng). https://doi.org/10.1161/STROKEAHA.110.609339.

    Article  PubMed  Google Scholar 

  36. Treurniet KM, Berkhemer OA, Immink RV, et al. A decrease in blood pressure is associated with unfavorable outcome in patients undergoing thrombectomy under general anesthesia. J Neurointerv Surg. 2018;10(2):107–11. https://doi.org/10.1136/neurintsurg-2017-012988.

    Article  PubMed  Google Scholar 

  37. Whalin MK, Halenda KM, Haussen DC, et al. Even small decreases in blood pressure during conscious sedation affect clinical outcome after stroke thrombectomy: an analysis of hemodynamic thresholds. AJNR Am J Neuroradiol. 2017;38(2):294–8. https://doi.org/10.3174/ajnr.A4992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Petersen NH, Ortega-Gutierrez S, Wang A, et al. Decreases in blood pressure during thrombectomy are associated with larger infarct volumes and worse functional outcome. Stroke. 2019;50(7):1797–804. https://doi.org/10.1161/STROKEAHA.118.024286.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Allison TA, Bowman S, Gulbis B, Hartman H, Schepcoff S, Lee K. Comparison of clevidipine and nicardipine for acute blood pressure reduction in patients with stroke. J Intensive Care Med. 2019;34(11-12):990–5. https://doi.org/10.1177/0885066617724340.

    Article  PubMed  Google Scholar 

  40. Thomalla G, Simonsen CZ, Boutitie F, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22. https://doi.org/10.1056/NEJMoa1804355.

    Article  PubMed  Google Scholar 

  41. Becker RC, Hochman JS, Cannon CP, et al. Fatal cardiac rupture among patients treated with thrombolytic agents and adjunctive thrombin antagonists: observations from the thrombolysis and thrombin inhibition in myocardial infarction 9 study. J Am Coll Cardiol. 1999;33(2):479–87. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9973029).

    Article  PubMed  Google Scholar 

  42. Diedler JMD, Ahmed NMDP, Sykora MMD, et al. Safety of intravenous thrombolysis for acute ischemic stroke in patients receiving antiplatelet therapy at stroke onset. Stroke. 2010;41(2):288–94. (http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=ovftk&AN=00007670-201002000-00028).

    Article  CAS  PubMed  Google Scholar 

  43. Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42(6):1775–7. (Research Support, Non-U.S. Gov't) (In Eng). https://doi.org/10.1161/STROKEAHA.110.609693.

    Article  PubMed  Google Scholar 

  44. Brandt T, von Kummer R, Muller-Kuppers M, Hacke W. Thrombolytic therapy of acute basilar artery occlusion. Variables affecting recanalization and outcome. Stroke. 1996;27(5):875–81. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8623107).

    Article  CAS  PubMed  Google Scholar 

  45. Kirton A, Wong JH, Mah J, et al. Successful endovascular therapy for acute basilar thrombosis in an adolescent. Pediatrics. 2003;112(3 Pt 1):e248–51. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12949321).

    Article  PubMed  Google Scholar 

  46. Hacke W, Albers G, Al-Rawi Y, et al. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke. 2005;36(1):66–73. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15569863).

    Article  CAS  PubMed  Google Scholar 

  47. Furlan AJ, Eyding D, Albers GW, et al. Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke. 2006;37(5):1227–31. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16574922).

    Article  CAS  PubMed  Google Scholar 

  48. Adams HP, del Zoppo GJ, von Kummer R. Management of stroke: a practical guide for the prevention, evaluation and treatment of acute stroke. 2nd ed. Caddo, OK: Professional Communications, Inc; 2002.

    Google Scholar 

  49. Agarwal P, Kumar S, Hariharan S, et al. Hyperdense middle cerebral artery sign: can it be used to select intra-arterial versus intravenous thrombolysis in acute ischemic stroke? Cerebrovasc Dis. 2004;17(2-3):182–90. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14707420).

    Article  PubMed  Google Scholar 

  50. Demchuk AM, Tanne D, Hill MD, et al. Predictors of good outcome after intravenous tPA for acute ischemic stroke. Neurology. 2001;57(3):474–80. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11502916).

    Article  CAS  PubMed  Google Scholar 

  51. Francis CW, Blinc A, Lee S, Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol. 1995;21(3):419–24. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7645133).

    Article  CAS  PubMed  Google Scholar 

  52. Nacu A, Kvistad CE, Naess H, et al. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): randomized controlled contrast-enhanced sonothrombolysis in an unselected acute ischemic stroke population. Stroke. 2017;48(2):335–41. https://doi.org/10.1161/STROKEAHA.116.014644.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alexandrov AV, Kohrmann M, Soinne L, et al. Safety and efficacy of sonothrombolysis for acute ischaemic stroke: a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Neurol. 2019;18(4):338–47. https://doi.org/10.1016/S1474-4422(19)30026-2.

    Article  PubMed  Google Scholar 

  54. Liu Q, Lu X, Yang H, et al. Early tirofiban administration for patients with acute ischemic stroke treated with intravenous thrombolysis or bridging therapy: systematic review and meta-analysis. Clin Neurol Neurosurg. 2022;222:107449. https://doi.org/10.1016/j.clineuro.2022.107449.

    Article  PubMed  Google Scholar 

  55. Chen HS, Cui Y, Zhou ZH, et al. Effect of argatroban plus intravenous alteplase vs intravenous alteplase alone on neurologic function in patients with acute ischemic stroke: the arais randomized clinical trial. JAMA. 2023; https://doi.org/10.1001/jama.2023.0550.

  56. Butcher KMDP, Christensen SP, Parsons MPF, et al. Postthrombolysis blood pressure elevation is associated with hemorrhagic transformation. Stroke. 2010;41(1):72–7. (http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=ovftk&AN=00007670-201001000-00016).

    Article  PubMed  Google Scholar 

  57. Graham GD. Tissue plasminogen activator for acute ischemic stroke in clinical practice: a meta-analysis of safety data. Stroke. 2003;34(12):2847–50. https://doi.org/10.1161/01.str.0000101752.23813.c3.

    Article  CAS  PubMed  Google Scholar 

  58. Hill MD, Lye T, Moss H, et al. Hemi-orolingual angioedema and ACE inhibition after alteplase treatment of stroke. Neurology. 2003;60(9):1525–7. (http://www.neurology.org/cgi/content/abstract/60/9/1525).

    Article  CAS  PubMed  Google Scholar 

  59. Hill MD, Buchan AM. Thrombolysis for acute ischemic stroke: results of the Canadian Alteplase for Stroke Effectiveness Study. CMAJ. 2005;172(10):1307–12. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15883405).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Engelter ST, Fluri F, Buitrago-Tellez C, et al. Life-threatening orolingual angioedema during thrombolysis in acute ischemic stroke. J Neurol. 2005;252(10):1167–70. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16184341).

    Article  CAS  PubMed  Google Scholar 

  61. Higashida RT, Furlan AJ. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke. 2003;34(8):109e–137. https://doi.org/10.1161/01.str.0000082721.62796.09.

    Article  Google Scholar 

  62. Zaidat OO, Yoo AJ, Khatri P, et al. Recommendations on angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. Stroke. 2013;44(9):2650–63. https://doi.org/10.1161/STROKEAHA.113.001972.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yoo AJ, Simonsen CZ, Prabhakaran S, et al. Refining angiographic biomarkers of revascularization: improving outcome prediction after intra-arterial therapy. Stroke. 2013;44(9):2509–12. https://doi.org/10.1161/STROKEAHA.113.001990.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Almekhlafi MA, Mishra S, Desai JA, et al. Not all “successful” angiographic reperfusion patients are an equal validation of a modified TICI scoring system. Interv Neuroradiol. 2014;20(1):21–7. https://doi.org/10.15274/INR-2014-10004.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mokin M, Ansari SA, McTaggart RA, et al. Indications for thrombectomy in acute ischemic stroke from emergent large vessel occlusion (ELVO): report of the SNIS Standards and Guidelines Committee. J Neurointerv Surg. 2019;11(3):215–20. https://doi.org/10.1136/neurintsurg-2018-014640.

    Article  PubMed  Google Scholar 

  66. Nguyen TN, Abdalkader M, Nagel S, et al. Noncontrast computed tomography vs computed tomography perfusion or magnetic resonance imaging selection in late presentation of stroke with large-vessel occlusion. JAMA Neurol. 2022;79(1):22–31. https://doi.org/10.1001/jamaneurol.2021.4082.

    Article  PubMed  Google Scholar 

  67. Saver JL, Goyal M, van der Lugt A, et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA. 2016;316(12):1279–88. https://doi.org/10.1001/jama.2016.13647.

    Article  PubMed  Google Scholar 

  68. Jadhav AP, Desai SM, Zaidat OO, et al. First pass effect with neurothrombectomy for acute ischemic stroke: analysis of the systematic evaluation of patients treated with stroke devices for acute ischemic stroke registry. Stroke. 2022;53(2):e30–2. https://doi.org/10.1161/STROKEAHA.121.035457.

    Article  PubMed  Google Scholar 

  69. Garcia-Tornel A, Requena M, Rubiera M, et al. When to stop. Stroke. 2019;50(7):1781–8. https://doi.org/10.1161/STROKEAHA.119.025088.

    Article  PubMed  Google Scholar 

  70. Brinjikji W, Starke RM, Murad MH, et al. Impact of balloon guide catheter on technical and clinical outcomes: a systematic review and meta-analysis. J Neurointerv Surg. 2018;10(4):335–9. https://doi.org/10.1136/neurintsurg-2017-013179.

    Article  PubMed  Google Scholar 

  71. Zaidat OO, Mueller-Kronast NH, Hassan AE, et al. Impact of balloon guide catheter use on clinical and angiographic outcomes in the STRATIS stroke thrombectomy registry. Stroke. 2019;50(3):697–704. https://doi.org/10.1161/STROKEAHA.118.021126.

    Article  PubMed  Google Scholar 

  72. Blasco J, Puig J, Daunis IEP, et al. Balloon guide catheter improvements in thrombectomy outcomes persist despite advances in intracranial aspiration technology. J Neurointerv Surg. 2021;13(9):773–8. https://doi.org/10.1136/neurintsurg-2020-017027.

    Article  PubMed  Google Scholar 

  73. Blasco J, Puig J, Lopez-Rueda A, et al. Addition of intracranial aspiration to balloon guide catheter does not improve outcomes in large vessel occlusion anterior circulation stent retriever based thrombectomy for acute stroke. J Neurointerv Surg. 2022;14(9):863–7. https://doi.org/10.1136/neurintsurg-2021-017760.

    Article  PubMed  Google Scholar 

  74. Teo YN, Sia CH, Tan BYQ, et al. Combined balloon guide catheter, aspiration catheter, and stent retriever technique versus balloon guide catheter and stent retriever alone technique: a systematic review and meta-analysis. J Neurointerv Surg. 2023;15(2):127–32. https://doi.org/10.1136/neurintsurg-2021-018406.

    Article  PubMed  Google Scholar 

  75. Bekelis K, Missios S, MacKenzie TA, Tjoumakaris S, Jabbour P. Anesthesia technique and outcomes of mechanical thrombectomy in patients with acute ischemic stroke. Stroke. 2017;48(2):361–6. https://doi.org/10.1161/STROKEAHA.116.015343.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ilyas A, Chen CJ, Ding D, et al. Endovascular mechanical thrombectomy for acute ischemic stroke under general anesthesia versus conscious sedation: a systematic review and meta-analysis. World Neurosurg. 2018;112:e355–67. https://doi.org/10.1016/j.wneu.2018.01.049.

    Article  PubMed  Google Scholar 

  77. Jagani M, Brinjikji W, Rabinstein AA, Pasternak JJ, Kallmes DF. Hemodynamics during anesthesia for intra-arterial therapy of acute ischemic stroke. J Neurointerv Surg. 2016;8(9):883–8. https://doi.org/10.1136/neurintsurg-2015-011867.

    Article  PubMed  Google Scholar 

  78. Howard LW, Demaerschalk BM, Chong BW, et al. Does general anesthesia compared with conscious sedation result in better outcomes in acute stroke patients undergoing endovascular therapy? Neurologist. 2021;26(2):47–51. https://doi.org/10.1097/NRL.0000000000000318.

    Article  PubMed  Google Scholar 

  79. Liang F. General anesthesia vs conscious sedation for endovascular treatment in patients with posterior circulation acute ischemic stroke. JAMA Neurol. 2022; https://doi.org/10.1001/jamaneurol.2022.3018.

  80. Flottmann F, Leischner H, Broocks G, et al. Emergency conversion to general anesthesia is a tolerable risk in patients undergoing mechanical thrombectomy. AJNR Am J Neuroradiol. 2020;41(1):122–7. https://doi.org/10.3174/ajnr.A6321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kumpe DA. Thrombolysis of acute stroke syndromes. In: Aruny JE, et al., editors. Handbook of interventional radiologic procedures. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 47–62.

    Google Scholar 

  82. Peterson C, Waldau B. Transradial access for thrombectomy in acute stroke: a systematic review and meta-analysis. Clin Neurol Neurosurg. 2020;198:106235. https://doi.org/10.1016/j.clineuro.2020.106235.

    Article  PubMed  Google Scholar 

  83. Siddiqui AH, Waqas M, Neumaier J, et al. Radial first or patient first: a case series and meta-analysis of transradial versus transfemoral access for acute ischemic stroke intervention. J Neurointerv Surg. 2021;13(8):687–92. https://doi.org/10.1136/neurintsurg-2020-017225.

    Article  PubMed  Google Scholar 

  84. Shaban S, Rastogi A, Phuyal S, et al. The association of transradial access and transfemoral access with procedural outcomes in acute ischemic stroke patients receiving endovascular thrombectomy: a meta-analysis. Clin Neurol Neurosurg. 2022;215:107209. https://doi.org/10.1016/j.clineuro.2022.107209.

    Article  PubMed  Google Scholar 

  85. Dossani RH, Waqas M, Rai HH, et al. Use of Walrus balloon-guide catheter through sheathless radial approach for mechanical thrombectomy of right middle cerebral artery occlusion. J Neurointerv Surg. 2022;14(5) https://doi.org/10.1136/neurintsurg-2021-017985.

  86. Ribo M, Flores A, Rubiera M, et al. Difficult catheter access to the occluded vessel during endovascular treatment of acute ischemic stroke is associated with worse clinical outcome. J Neurointerv Surg. 2013;5(Suppl 1):i70–3. https://doi.org/10.1136/neurintsurg-2012-010438.

    Article  PubMed  Google Scholar 

  87. Dumas V, Kaesmacher J, Ognard J, et al. Carotid artery direct access for mechanical thrombectomy: the Carotid Artery Puncture Evaluation (CARE) study. J Neurointerv Surg. 2021; https://doi.org/10.1136/neurintsurg-2021-017935.

  88. Cord BJ, Kodali S, Strander S, et al. Direct carotid puncture for mechanical thrombectomy in acute ischemic stroke patients with prohibitive vascular access. J Neurosurg. 2020:1–11. https://doi.org/10.3171/2020.5.JNS192737.

  89. Colombo E, Rinaldo L, Lanzino G. Direct carotid puncture in acute ischaemic stroke intervention. Stroke Vasc Neurol. 2020;5(1):71–9. https://doi.org/10.1136/svn-2019-000260.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rubiera M, Cava L, Tsivgoulis G, et al. Diagnostic criteria and yield of real-time transcranial Doppler monitoring of intra-arterial reperfusion procedures. Stroke. 2010;41(4):695–9. https://doi.org/10.1161/STROKEAHA.109.565762.

    Article  PubMed  Google Scholar 

  91. Nogueira RG, Lutsep HL, Gupta R, et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet. 2012;380(9849):1231–40. https://doi.org/10.1016/S0140-6736(12)61299-9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Saver JL, Jahan R, Levy EI, et al. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet. 2012;380(9849):1241–9. https://doi.org/10.1016/S0140-6736(12)61384-1.

    Article  PubMed  Google Scholar 

  93. Dippel DW, Majoie CB, Roos YB, et al. Influence of device choice on the effect of intra-arterial treatment for acute ischemic stroke in MR CLEAN (multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands). Stroke. 2016;47(10):2574–81. https://doi.org/10.1161/STROKEAHA.116.013929.

    Article  PubMed  Google Scholar 

  94. Pfaff J, Rohde S, Engelhorn T, Doerfler A, Bendszus M, Mohlenbruch MA. Mechanical thrombectomy using the new solitaire platinum stent-retriever : reperfusion results, complication rates and early neurological outcome. Clin Neuroradiol. 2019;29(2):311–9. https://doi.org/10.1007/s00062-017-0657-x.

    Article  PubMed  Google Scholar 

  95. Jadhav AP, Desai SM, Budzik RF, et al. First pass effect in patients with large vessel occlusion strokes undergoing neurothrombectomy: insights from the Trevo Retriever Registry. J Neurointerv Surg. 2021;13(7):619–22. https://doi.org/10.1136/neurintsurg-2020-016952.

    Article  PubMed  Google Scholar 

  96. Yi HJ, Lee DH, Kim SU. Effectiveness of Trevo stent retriever in acute ischemic stroke: Comparison with Solitaire stent. Medicine (Baltimore). 2018;97(20):e10747. https://doi.org/10.1097/MD.0000000000010747.

    Article  PubMed  Google Scholar 

  97. Zaidat OO, Bozorgchami H, Ribo M, et al. Primary results of the multicenter ARISE II study (analysis of revascularization in ischemic stroke with EmboTrap). Stroke. 2018;49(5):1107–15. https://doi.org/10.1161/STROKEAHA.117.020125.

    Article  PubMed  Google Scholar 

  98. Gupta R, Saver JL, Levy E, et al. New class of radially adjustable stentrievers for acute ischemic stroke: primary results of the multicenter TIGER trial. Stroke. 2021;52(5):1534–44. https://doi.org/10.1161/STROKEAHA.121.034436.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Smith WS, Yan B. REVASCAT trial: further advancement in endovascular stroke therapy. Stroke. 2015;46(10):3012–3. https://doi.org/10.1161/STROKEAHA.115.010817.

    Article  PubMed  Google Scholar 

  100. Ducroux C, Renaud N, Bourcier R, et al. Embolus Retriever with Interlinked Cages (ERIC) versus conventional stent retrievers for thrombectomy: a propensity score-based analysis. J Neurointerv Surg. 2021;13(3):255–60. https://doi.org/10.1136/neurintsurg-2020-016289.

    Article  PubMed  Google Scholar 

  101. Schwaiger BJ, Kober F, Gersing AS, et al. The pREset stent retriever for endovascular treatment of stroke caused by MCA occlusion: safety and clinical outcome. Clin Neuroradiol. 2016;26(1):47–55. https://doi.org/10.1007/s00062-014-0329-z.

    Article  CAS  PubMed  Google Scholar 

  102. Serna Candel C, Aguilar Perez M, Bazner H, Henkes H, Hellstern V. First-pass reperfusion by mechanical thrombectomy in acute M1 occlusion: the size of retriever matters. Front Neurol. 2021;12:679402. https://doi.org/10.3389/fneur.2021.679402.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Velioglu M, Onal Y, Agackiran A, Dogan Ak P, Karakas HM. Initial experience with the CatchView thrombectomy device for acute ischemic stroke. J Neurointerv Surg. 2021;13(10):946–50. https://doi.org/10.1136/neurintsurg-2020-016784.

    Article  PubMed  Google Scholar 

  104. Nogueira RG. Primary results and associated clot composition in the EXCELLENT registry. New Orleans: International Stroke Conference; 2022.

    Google Scholar 

  105. Behme D, Kowoll A, Mpotsaris A, et al. Multicenter clinical experience in over 125 patients with the Penumbra Separator 3D for mechanical thrombectomy in acute ischemic stroke. J Neurointerv Surg. 2016;8(1):8–12. https://doi.org/10.1136/neurintsurg-2014-011446.

    Article  PubMed  Google Scholar 

  106. Akpinar CK, Ozdemir AO, Gurkas E, et al. Favorable first-pass recanalization rates with NeVa thrombectomy device in acute stroke patients: Initial clinical experience. Interv Neuroradiol. 2021;27(1):107–13. https://doi.org/10.1177/1591019920938223.

    Article  PubMed  Google Scholar 

  107. Kallenberg K, Solymosi L, Taschner CA, et al. Endovascular stroke therapy with the Aperio thrombectomy device. J Neurointerv Surg. 2016;8(8):834–9. https://doi.org/10.1136/neurintsurg-2015-011678.

    Article  PubMed  Google Scholar 

  108. Fargen KM, Mocco J, Gobin YP. The Lazarus Funnel: a blinded prospective randomized in vitro trial of a novel CE-marked thrombectomy assist device. J Neurointerv Surg. 2016;8(1):66–8. https://doi.org/10.1136/neurintsurg-2014-011432.

    Article  PubMed  Google Scholar 

  109. Khatri R, Khatri P, Khoury J, Broderick J, Carrozzella J, Tomsick T. Microcatheter contrast injections during intra-arterial thrombolysis increase intracranial hemorrhage risk. J Neurointerv Surg. 2010;2(2):115–9. https://doi.org/10.1136/jnis.2009.000794.

    Article  PubMed  Google Scholar 

  110. Cimflova P, Singh N, Ospel JM, et al. Association of stent-retriever characteristics in establishing successful reperfusion during mechanical thrombectomy : results from the ESCAPE-NA1 trial. Clin Neuroradiol. 2022; https://doi.org/10.1007/s00062-021-01123-0.

  111. Haussen DC, Rebello LC, Nogueira RG. Optimizating clot retrieval in acute stroke: the push and fluff technique for closed-cell stentrievers. Stroke. 2015;46(10):2838–42. https://doi.org/10.1161/STROKEAHA.115.010044.

    Article  CAS  PubMed  Google Scholar 

  112. Bourcier R, Saleme S, Labreuche J, et al. More than three passes of stent retriever is an independent predictor of parenchymal hematoma in acute ischemic stroke. J Neurointerv Surg. 2019;11(7):625–9. https://doi.org/10.1136/neurintsurg-2018-014380.

    Article  PubMed  Google Scholar 

  113. Klisch J, Sychra V, Strasilla C, et al. Double solitaire mechanical thrombectomy in acute stroke: effective rescue strategy for refractory artery occlusions? AJNR Am J Neuroradiol. 2015;36(3):552–6. https://doi.org/10.3174/ajnr.A4133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cabral LS, Mont'Alverne F, Silva HC, et al. Device size selection can enhance Y-stentrieving efficacy and safety as a rescue strategy in stroke thrombectomy. J Neurointerv Surg. 2022;14(6):558–63. https://doi.org/10.1136/neurintsurg-2021-017751.

    Article  PubMed  Google Scholar 

  115. Vega P, Murias E, Jimenez JM, et al. First-line double stentriever thrombectomy for M1/TICA occlusions: initial experiences. Clin Neuroradiol. 2022;32(4):971–7. https://doi.org/10.1007/s00062-022-01161-2.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Turk AS, Frei D, Fiorella D, et al. ADAPT FAST study: a direct aspiration first pass technique for acute stroke thrombectomy. J Neurointerv Surg. 2014;6(4):260–4. https://doi.org/10.1136/neurintsurg-2014-011125.

    Article  PubMed  Google Scholar 

  117. Blanc R, Redjem H, Ciccio G, et al. Predictors of the aspiration component success of a direct aspiration first pass technique (ADAPT) for the endovascular treatment of stroke reperfusion strategy in anterior circulation acute stroke. Stroke. 2017;48(6):1588–93. https://doi.org/10.1161/STROKEAHA.116.016149.

    Article  PubMed  Google Scholar 

  118. Turk AS 3rd, Siddiqui A, Fifi JT, et al. Aspiration thrombectomy versus stent retriever thrombectomy as first-line approach for large vessel occlusion (COMPASS): a multicentre, randomised, open label, blinded outcome, non-inferiority trial. Lancet. 2019;393(10175):998–1008. https://doi.org/10.1016/S0140-6736(19)30297-1.

    Article  PubMed  Google Scholar 

  119. Maisel W. Neurovascular thrombus retrieval catheters and guide catheters used during neurological interventional procedures: Differences in FDA review and intended use-Letter to Health Care Providers. U.S. Food and Drug Administration. (https://www.fda.gov/MedicalDevices/Safety/LetterstoHealthCareProviders/ucm543890.htm).

  120. Jankowitz B, Grandhi R, Horev A, et al. Primary manual aspiration thrombectomy (MAT) for acute ischemic stroke: safety, feasibility and outcomes in 112 consecutive patients. J Neurointerv Surg. 2015;7(1):27–31. https://doi.org/10.1136/neurintsurg-2013-011024.

    Article  PubMed  Google Scholar 

  121. Brinjikji W, Raz E, De Leacy R, et al. MRS SOFIA: a multicenter retrospective study for use of Sofia for revascularization of acute ischemic stroke. J Neurointerv Surg. 2022;14(1) https://doi.org/10.1136/neurintsurg-2020-017042.

  122. Vargas J, Blalock J, Venkatraman A, et al. Efficacy of beveled tip aspiration catheter in mechanical thrombectomy for acute ischemic stroke. J Neurointerv Surg. 2021;13(9):823–6. https://doi.org/10.1136/neurintsurg-2020-016695.

    Article  PubMed  Google Scholar 

  123. Hui FK, Hussain MS, Spiotta A, et al. Merci retrievers as access adjuncts for reperfusion catheters: the grappling hook technique. Neurosurgery. 2011. (In Eng); https://doi.org/10.1227/NEU.0b013e3182315f22.

  124. Pfaff JAR, Siekmann R, Shah YP, et al. Delivery assist catheters: a new device class and initial experience in mechanical thrombectomy in acute ischemic stroke patients. Clin Neuroradiol. 2019;29(4):661–7. https://doi.org/10.1007/s00062-018-0725-x.

    Article  PubMed  Google Scholar 

  125. Takahira K, Kataoka T, Ogino T, Endo H, Nakamura H. Efficacy of a coaxial system with a compliant balloon catheter for navigation of the Penumbra reperfusion catheter in tortuous arteries: technique and case experience. J Neurosurg. 2017;126(4):1334–8. https://doi.org/10.3171/2016.3.JNS152790.

    Article  PubMed  Google Scholar 

  126. Khatri P, Broderick JP, Khoury JC, Carrozzella JA, Tomsick TA. Microcatheter contrast injections during intra-arterial thrombolysis may increase intracranial hemorrhage risk. Stroke. 2008;39(12):3283–7. (Research Support, N.I.H., Extramural) (In Eng). https://doi.org/10.1161/STROKEAHA.108.522904.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chopko BW, Kerber C, Wong W, Georgy B. Transcatheter snare removal of acute middle cerebral artery thromboembolism: technical case report. Neurosurgery. 2000;46(6):1529–31.

    Article  CAS  PubMed  Google Scholar 

  128. Kerber CW, Barr JD, Berger RM, Chopko BW. Snare retrieval of intracranial thrombus in patients with acute stroke. J Vasc Interv Radiol. 2002;13(12):1269–74. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12471193).

    Article  PubMed  Google Scholar 

  129. Fourie P, Duncan IC. Microsnare-assisted mechanical removal of intraprocedural distal middle cerebral arterial thromboembolism. AJNR Am J Neuroradiol. 2003;24(4):630–2. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12695193).

    PubMed  PubMed Central  Google Scholar 

  130. Wikholm G. Transarterial embolectomy in acute stroke. AJNR Am J Neuroradiol. 2003;24(5):892–4. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12748090).

    PubMed  PubMed Central  Google Scholar 

  131. Nesbit GM, Luh G, Tien R, Barnwell SL. New and Future Endovascular Treatment Strategies for Acute Ischemic Stroke. J Vasc Interv Radiol. 2004;15(1):103S–110. https://doi.org/10.1097/01.rvi.0000112578.95689.66.

    Article  Google Scholar 

  132. Lutsep HL, Clark WM, Nesbit GM, Kuether TA, Barnwell SL. Intraarterial suction thrombectomy in acute stroke. AJNR Am J Neuroradiol. 2002;23(5):783–6. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12006277).

    PubMed  PubMed Central  Google Scholar 

  133. Chapot R, Houdart E, Rogopoulos A, Mounayer C, Saint-Maurice JP, Merland JJ. Thromboaspiration in the basilar artery: report of two cases. AJNR Am J Neuroradiol. 2002;23(2):282–4. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11847055).

    PubMed  PubMed Central  Google Scholar 

  134. Nedeltchev K, Remonda L, Do DD, et al. Acute stenting and thromboaspiration in basilar artery occlusions due to embolism from the dominating vertebral artery. Neuroradiology. 2004;46(8):686–91. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15205861).

    Article  CAS  PubMed  Google Scholar 

  135. Khatri P, Hill MD, Palesch YY, et al. Methodology of the interventional management of stroke III trial. Int J Stroke. 2008;3(2):130–7. (Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural) (In Eng). https://doi.org/10.1111/j.1747-4949.2008.00151.x.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lewandowski CA, Frankel M, Tomsick TA, et al. Combined intravenous and intra-arterial r-TPA versus intra-arterial therapy of acute ischemic stroke: Emergency Management of Stroke (EMS) bridging trial. Stroke. 1999;30(12):2598–605. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10582984).

    Article  CAS  PubMed  Google Scholar 

  137. The IMSSI. Combined intravenous and intra-arterial recanalization for acute ischemic stroke: the interventional management of stroke study. Stroke. 2004;35(4):904–11. https://doi.org/10.1161/01.str.0000121641.77121.98.

    Article  Google Scholar 

  138. Mazighi M, Serfaty JM, Labreuche J, et al. Comparison of intravenous alteplase with a combined intravenous-endovascular approach in patients with stroke and confirmed arterial occlusion (RECANALISE study): a prospective cohort study. Lancet Neurol. 2009;8(9):802–9. (Clinical Trial Comparative Study Research Support, Non-U.S. Gov't) (In Eng). https://doi.org/10.1016/S1474-4422(09)70182-6.

    Article  CAS  PubMed  Google Scholar 

  139. Rubiera MMDP, Ribo MMDP, Pagola JMDP, et al. Bridging intravenous-intra-arterial rescue strategy increases recanalization and the likelihood of a good outcome in nonresponder intravenous tissue plasminogen activator-treated patients: a case-control study. Stroke. 2011;42(4):993–7. (http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=ovftl&AN=00007670-201104000-00022).

    Article  CAS  PubMed  Google Scholar 

  140. Eckert B, Koch C, Thomalla G, et al. Aggressive therapy with intravenous abciximab and intra-arterial rtPA and additional PTA/stenting improves clinical outcome in acute vertebrobasilar occlusion: combined local fibrinolysis and intravenous abciximab in acute vertebrobasilar stroke treatment (FAST): results of a multicenter study. Stroke. 2005;36(6):1160–5. https://doi.org/10.1161/01.STR.0000165918.80812.1e.

    Article  CAS  PubMed  Google Scholar 

  141. Nagel S, Schellinger PD, Hartmann M, et al. Therapy of acute basilar artery occlusion: intraarterial thrombolysis alone vs bridging therapy. Stroke. 2009;40(1):140–6. https://doi.org/10.1161/STROKEAHA.108.526566.

    Article  PubMed  Google Scholar 

  142. Katsanos AH, Malhotra K, Goyal N, et al. Intravenous thrombolysis prior to mechanical thrombectomy in large vessel occlusions. Ann Neurol. 2019;86(3):395–406. https://doi.org/10.1002/ana.25544.

    Article  PubMed  Google Scholar 

  143. Zi W, Qiu Z, Li F, et al. Effect of endovascular treatment alone vs intravenous alteplase plus endovascular treatment on functional independence in patients with acute ischemic stroke: the DEVT randomized clinical trial. JAMA. 2021;325(3):234–43. https://doi.org/10.1001/jama.2020.23523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang P, Zhang Y, Zhang L, et al. Endovascular thrombectomy with or without intravenous alteplase in acute stroke. N Engl J Med. 2020;382(21):1981–93. https://doi.org/10.1056/NEJMoa2001123.

    Article  CAS  PubMed  Google Scholar 

  145. Suzuki K, Matsumaru Y, Takeuchi M, et al. Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke: the SKIP randomized clinical trial. JAMA. 2021;325(3):244–53. https://doi.org/10.1001/jama.2020.23522.

    Article  PubMed  PubMed Central  Google Scholar 

  146. LeCouffe NE, Kappelhof M, Treurniet KM, et al. A randomized trial of intravenous alteplase before endovascular treatment for stroke. N Engl J Med. 2021;385(20):1833–44. https://doi.org/10.1056/NEJMoa2107727.

    Article  CAS  PubMed  Google Scholar 

  147. Smith EE, Zerna C, Solomon N, et al. Outcomes after endovascular thrombectomy with or without alteplase in routine clinical practice. JAMA Neurol. 2022;79(8):768–76. https://doi.org/10.1001/jamaneurol.2022.1413.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Campbell BCV, Mitchell PJ, Churilov L, et al. Tenecteplase versus alteplase before thrombectomy for ischemic stroke. N Engl J Med. 2018;378(17):1573–82. https://doi.org/10.1056/NEJMoa1716405.

    Article  CAS  PubMed  Google Scholar 

  149. Kaesmacher J, Bellwald S, Dobrocky T, et al. Safety and efficacy of intra-arterial urokinase after failed, unsuccessful, or incomplete mechanical thrombectomy in anterior circulation large-vessel occlusion stroke. JAMA Neurol. 2020;77(3):318–26. https://doi.org/10.1001/jamaneurol.2019.4192.

    Article  PubMed  Google Scholar 

  150. Renu A, Millan M, San Roman L, et al. Effect of intra-arterial alteplase vs placebo following successful thrombectomy on functional outcomes in patients with large vessel occlusion acute ischemic stroke: the CHOICE randomized clinical trial. JAMA. 2022;327(9):826–35. https://doi.org/10.1001/jama.2022.1645.

    Article  CAS  PubMed  Google Scholar 

  151. Turk AS, Spiotta A, Frei D, et al. Initial clinical experience with the ADAPT technique: a direct aspiration first pass technique for stroke thrombectomy. J Neurointerv Surg. 2018;10(Suppl 1):i20–5. https://doi.org/10.1136/neurintsurg-2013-010713.rep.

    Article  PubMed  Google Scholar 

  152. Zhang Y, Zhang Y, Hu C, Zhao W, Zhang Z, Li W. A direct aspiration first-pass technique (ADAPT) versus stent retriever for acute ischemic stroke (AIS): a systematic review and meta-analysis. J Neurol. 2021;268(12):4594–606. https://doi.org/10.1007/s00415-020-10284-w.

    Article  PubMed  Google Scholar 

  153. Ospel JM, McTaggart R, Kashani N, Psychogios M, Almekhlafi M, Goyal M. Evolution of stroke thrombectomy techniques to optimize first-pass complete reperfusion. Semin Intervent Radiol. 2020;37(2):119–31. https://doi.org/10.1055/s-0040-1709153.

    Article  PubMed  PubMed Central  Google Scholar 

  154. McTaggart RA, Tung EL, Yaghi S, et al. Continuous aspiration prior to intracranial vascular embolectomy (CAPTIVE): a technique which improves outcomes. J Neurointerv Surg. 2017;9(12):1154–9. https://doi.org/10.1136/neurintsurg-2016-012838.

    Article  PubMed  Google Scholar 

  155. Brehm A, Maus V, Tsogkas I, et al. Stent-retriever assisted vacuum-locked extraction (SAVE) versus a direct aspiration first pass technique (ADAPT) for acute stroke: data from the real-world. BMC Neurol. 2019;19(1):65. https://doi.org/10.1186/s12883-019-1291-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wu Y, Wang J, Sun R, et al. A novel endovascular therapy strategy for acute ischemic stroke due to intracranial atherosclerosis-related large vessel occlusion: Stent-Pass-Aspiration-resCuE-Micowire-Angioplasty (SPACEMAN) technique. Front Neurol. 2022;13:798542. https://doi.org/10.3389/fneur.2022.798542.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Matsumoto H, Nishiyama H, Tetsuo Y, Takemoto H, Nakao N. Initial clinical experience using the two-stage aspiration technique (TSAT) with proximal flow arrest by a balloon guiding catheter for acute ischemic stroke of the anterior circulation. J Neurointerv Surg. 2017;9(12):1160–5. https://doi.org/10.1136/neurintsurg-2016-012787.

    Article  PubMed  Google Scholar 

  158. Marto JP, Strambo D, Hajdu SD, et al. Twenty-four-hour reocclusion after successful mechanical thrombectomy: associated factors and long-term prognosis. Stroke. 2019;50(10):2960–3. https://doi.org/10.1161/STROKEAHA.119.026228.

    Article  PubMed  Google Scholar 

  159. Matusevicius M, Cooray C, Bottai M, et al. Blood pressure after endovascular thrombectomy: modeling for outcomes based on recanalization status. Stroke. 2020;51(2):519–25. https://doi.org/10.1161/STROKEAHA.119.026914.

    Article  PubMed  Google Scholar 

  160. Mistry EA, Mehta T, Mistry A, et al. Blood pressure variability and neurologic outcome after endovascular thrombectomy: a secondary analysis of the BEST study. Stroke. 2020;51(2):511–8. https://doi.org/10.1161/STROKEAHA.119.027549.

    Article  PubMed  Google Scholar 

  161. Webb AJ, Rothwell PM. Effect of dose and combination of antihypertensives on interindividual blood pressure variability: a systematic review. Stroke. 2011;42(10):2860–5. https://doi.org/10.1161/STROKEAHA.110.611566.

    Article  CAS  PubMed  Google Scholar 

  162. Salsano G, Pracucci G, Mavilio N, et al. Complications of mechanical thrombectomy for acute ischemic stroke: Incidence, risk factors, and clinical relevance in the Italian Registry of Endovascular Treatment in acute stroke. Int J Stroke. 2021;16(7):818–27. https://doi.org/10.1177/1747493020976681.

    Article  PubMed  Google Scholar 

  163. Neuberger U, Kickingereder P, Schonenberger S, et al. Risk factors of intracranial hemorrhage after mechanical thrombectomy of anterior circulation ischemic stroke. Neuroradiology. 2019;61(4):461–9. https://doi.org/10.1007/s00234-019-02180-6.

    Article  PubMed  Google Scholar 

  164. Hao Y, Liu W, Wang H, et al. Prognosis of asymptomatic intracranial hemorrhage after endovascular treatment. J Neurointerv Surg. 2019;11(2):123–6. https://doi.org/10.1136/neurintsurg-2018-013848.

    Article  PubMed  Google Scholar 

  165. Lee H, Qureshi AM, Mueller-Kronast NH, et al. Subarachnoid hemorrhage in mechanical thrombectomy for acute ischemic stroke: analysis of the STRATIS registry, systematic review, and meta-analysis. Front Neurol. 2021;12:663058. https://doi.org/10.3389/fneur.2021.663058.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yoon W, Jung MY, Jung SH, Park MS, Kim JT, Kang HK. Subarachnoid hemorrhage in a multimodal approach heavily weighted toward mechanical thrombectomy with solitaire stent in acute stroke. Stroke. 2013;44(2):414–9. https://doi.org/10.1161/STROKEAHA.112.675546.

    Article  PubMed  Google Scholar 

  167. Neuberger U, Mohlenbruch MA, Herweh C, Ulfert C, Bendszus M, Pfaff J. Classification of bleeding events: comparison of ECASS III (European Cooperative Acute Stroke Study) and the new heidelberg bleeding classification. Stroke. 2017;48(7):1983–5. https://doi.org/10.1161/STROKEAHA.117.016735.

    Article  PubMed  Google Scholar 

  168. Boisseau W, Fahed R, Lapergue B, et al. Predictors of parenchymal hematoma after mechanical thrombectomy: a multicenter study. Stroke. 2019;50(9):2364–70. https://doi.org/10.1161/STROKEAHA.118.024512.

    Article  PubMed  Google Scholar 

  169. Huang X, Xu J, Yang K, et al. Blood pressure after endovascular thrombectomy and malignant cerebral edema in large vessel occlusion stroke. Front Neurol. 2021;12:707275. https://doi.org/10.3389/fneur.2021.707275.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wu S, Yuan R, Wang Y, et al. Early prediction of malignant brain edema after ischemic stroke. Stroke. 2018;49(12):2918–27. https://doi.org/10.1161/STROKEAHA.118.022001.

    Article  PubMed  Google Scholar 

  171. Huang X, Yang Q, Shi X, et al. Predictors of malignant brain edema after mechanical thrombectomy for acute ischemic stroke. J Neurointerv Surg. 2019;11(10):994–8. https://doi.org/10.1136/neurintsurg-2018-014650.

    Article  PubMed  Google Scholar 

  172. Nawabi J, Flottmann F, Hanning U, et al. Futile recanalization with poor clinical outcome is associated with increased edema volume after ischemic stroke. Invest Radiol. 2019;54(5):282–7. https://doi.org/10.1097/RLI.0000000000000539.

    Article  PubMed  Google Scholar 

  173. Qureshi AI, Hussein HM, Abdelmoula M, Georgiadis AL, Janjua N. Subacute recanalization and reocclusion in patients with acute ischemic stroke following endovascular treatment. Neurocrit Care. 2009;10(2):195–203. https://doi.org/10.1007/s12028-008-9161-0.

    Article  PubMed  Google Scholar 

  174. Mosimann PJ, Kaesmacher J, Gautschi D, et al. Predictors of unexpected early reocclusion after successful mechanical thrombectomy in acute ischemic stroke patients. Stroke. 2018;49(11):2643–51. https://doi.org/10.1161/STROKEAHA.118.021685.

    Article  PubMed  Google Scholar 

  175. Li W, Ding J, Sui X, et al. Prognosis and risk factors for reocclusion after mechanical thrombectomy. Ann Clin Transl Neurol. 2020;7(4):420–8. https://doi.org/10.1002/acn3.50999.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Awad AW, Kilburg C, Ravindra VM, et al. Predicting death after thrombectomy in the treatment of acute stroke. Front Surg. 2020;7:16. https://doi.org/10.3389/fsurg.2020.00016.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Pirson FAV, van Oostenbrugge RJ, van Zwam WH, et al. Repeated endovascular thrombectomy in patients with acute ischemic stroke: results from a nationwide multicenter database. Stroke. 2020;51(2):526–32. https://doi.org/10.1161/STROKEAHA.119.027525.

    Article  PubMed  Google Scholar 

  178. Cornelissen SA, Andersson T, Holmberg A, et al. Intracranial stenting after failure of thrombectomy with the emboTrap((R)) device. Clin Neuroradiol. 2019;29(4):677–83. https://doi.org/10.1007/s00062-018-0697-x.

    Article  PubMed  Google Scholar 

  179. Friedman SG, Pellerito JS, Scher L, Faust G, Burke B, Safa T. Ultrasound-guided thrombin injection is the treatment of choice for femoral pseudoaneurysms. Arch Surg. 2002;137(4):462–4. (https://www.ncbi.nlm.nih.gov/pubmed/11926954).

    Article  CAS  PubMed  Google Scholar 

  180. Hill MD, Barber PA, Takahashi J, Demchuk AM, Feasby TE, Buchan AM. Anaphylactoid reactions and angioedema during alteplase treatment of acute ischemic stroke. Cmaj. 2000;162(9):1281–4. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10813008).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Sarraj A, Hassan AE, Savitz S, et al. Outcomes of endovascular thrombectomy vs medical management alone in patients with large ischemic cores: a secondary analysis of the optimizing patient's selection for endovascular treatment in acute ischemic stroke (SELECT) study. JAMA Neurol. 2019;76(10):1147–56. https://doi.org/10.1001/jamaneurol.2019.2109.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Meyer L, Bechstein M, Bester M, et al. Thrombectomy in extensive stroke may not be beneficial and is associated with increased risk for hemorrhage. Stroke. 2021;52(10):3109–17. https://doi.org/10.1161/STROKEAHA.120.033101.

    Article  CAS  PubMed  Google Scholar 

  183. Howard G, Goff DC. Population shifts and the future of stroke: forecasts of the future burden of stroke. Ann N Y Acad Sci. 2012;1268:14–20. https://doi.org/10.1111/j.1749-6632.2012.06665.x.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Chandra RV, Leslie-Mazwi TM, Oh DC, et al. Elderly patients are at higher risk for poor outcomes after intra-arterial therapy. Stroke. 2012;43(9):2356–61. https://doi.org/10.1161/STROKEAHA.112.650713.

    Article  PubMed  Google Scholar 

  185. Di Carlo A, Lamassa M, Pracucci G, et al. Stroke in the very old : clinical presentation and determinants of 3-month functional outcome: a European perspective. European BIOMED study of stroke care group. Stroke. 1999;30(11):2313–9. (http://www.ncbi.nlm.nih.gov/pubmed/10548664).

    Article  PubMed  Google Scholar 

  186. Castonguay AC, Zaidat OO, Novakovic R, et al. Influence of age on clinical and revascularization outcomes in the North American Solitaire Stent-Retriever Acute Stroke Registry. Stroke. 2014;45(12):3631–6. https://doi.org/10.1161/STROKEAHA.114.006487.

    Article  PubMed  Google Scholar 

  187. Willey JZ, Ortega-Gutierrez S, Petersen N, et al. Impact of acute ischemic stroke treatment in patients >80 years of age: the specialized program of translational research in acute stroke (SPOTRIAS) consortium experience. Stroke. 2012;43(9):2369–75. https://doi.org/10.1161/STROKEAHA.112.660993.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Meyer L, Alexandrou M, Flottmann F, et al. Endovascular treatment of very elderly patients aged >/=90 with acute ischemic stroke. J Am Heart Assoc. 2020;9(5):e014447. https://doi.org/10.1161/JAHA.119.014447.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ganesh A, Fladt J, Singh N, Goyal M. Efficacy and safety of mechanical thrombectomy in acute stroke patients with pre-morbid disability. Expert Rev Med Devices. 2022;19(8):641–8. https://doi.org/10.1080/17434440.2022.2124109.

    Article  CAS  PubMed  Google Scholar 

  190. Satti S, Chen J, Sivapatham T, Jayaraman M, Orbach D. Mechanical thrombectomy for pediatric acute ischemic stroke: review of the literature. J Neurointerv Surg. 2016; https://doi.org/10.1136/neurintsurg-2016-012320.

  191. Bhatia K, Kortman H, Blair C, et al. Mechanical thrombectomy in pediatric stroke: systematic review, individual patient data meta-analysis, and case series. J Neurosurg Pediatr. 2019:1–14. https://doi.org/10.3171/2019.5.PEDS19126.

  192. Bhatia KD, Briest R, Goetti R, et al. Incidence and natural history of pediatric large vessel occlusion stroke: a population study. JAMA Neurol. 2022;79(5):488–97. https://doi.org/10.1001/jamaneurol.2022.0323.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–90. https://doi.org/10.1001/jamaneurol.2020.1127.

    Article  PubMed  Google Scholar 

  194. Wang A, Mandigo GK, Yim PD, Meyers PM, Lavine SD. Stroke and mechanical thrombectomy in patients with COVID-19: technical observations and patient characteristics. J Neurointerv Surg. 2020;12(7):648–53. https://doi.org/10.1136/neurintsurg-2020-016220.

    Article  PubMed  Google Scholar 

  195. Styczen H, Maus V, Goertz L, et al. Mechanical thrombectomy for acute ischemic stroke in COVID-19 patients: multicenter experience in 111 cases. J Neurointerv Surg. 2022;14(9):858–62. https://doi.org/10.1136/neurintsurg-2022-018723.

    Article  PubMed  Google Scholar 

  196. Brandt T. Diagnosis and thrombolytic therapy of acute basilar artery occlusion: a review. Clin Exp Hypertens. 2002;24(7-8):611–22. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12450236).

    Article  PubMed  Google Scholar 

  197. Brandt T, Knauth M, Wildermuth S, et al. CT angiography and Doppler sonography for emergency assessment in acute basilar artery ischemia. Stroke. 1999;30(3):606–12. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10066859).

    Article  CAS  PubMed  Google Scholar 

  198. Vergouwen MD, Algra A, Pfefferkorn T, et al. Time is brain(stem) in basilar artery occlusion. Stroke. 2012;43(11):3003–6. https://doi.org/10.1161/STROKEAHA.112.666867.

    Article  PubMed  Google Scholar 

  199. Kwak HS, Park JS. Mechanical thrombectomy in basilar artery occlusion: clinical outcomes related to posterior circulation collateral score. Stroke. 2020;51(7):2045–50. https://doi.org/10.1161/STROKEAHA.120.029861.

    Article  CAS  PubMed  Google Scholar 

  200. Schellinger PD, Hacke W. Intra-arterial thrombolysis is the treatment of choice for basilar thrombosis: pro. Stroke. 2006;37(9):2436–7. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16888252).

    Article  PubMed  Google Scholar 

  201. Ford GA. Intra-arterial thrombolysis is the treatment of choice for basilar thrombosis: con. Stroke. 2006;37(9):2438–9. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16888251).

    Article  PubMed  Google Scholar 

  202. Macleod MR, Davis SM, Mitchell PJ, et al. Results of a multicentre, randomised controlled trial of intra-arterial urokinase in the treatment of acute posterior circulation ischaemic stroke. Cerebrovasc Dis. 2005;20(1):12–7. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15925877).

    Article  CAS  PubMed  Google Scholar 

  203. Schonewille WJ, Wijman CA, Michel P, et al. Treatment and outcomes of acute basilar artery occlusion in the Basilar Artery International Cooperation Study (BASICS): a prospective registry study. Lancet Neurol. 2009;8(8):724–30. https://doi.org/10.1016/S1474-4422(09)70173-5.

    Article  PubMed  Google Scholar 

  204. Langezaal LCM, van der Hoeven E, Mont'Alverne FJA, et al. Endovascular therapy for stroke due to basilar-artery occlusion. N Engl J Med. 2021;384(20):1910–20. https://doi.org/10.1056/NEJMoa2030297.

    Article  PubMed  Google Scholar 

  205. Nogueira RG, Hu W. Endovascular treatment for acute basilar artery occlusion-a multi-centr randomised controlled trial (ATTENTION). European Stroke Organization Conference. Lyons, France; 2022.

    Google Scholar 

  206. Jovin TG, Ji, X. Basilar artery occlusion Chinese trial. European Stroke Organization Conference. Lyons, France; 2022.

    Google Scholar 

  207. Davis SM, Donnan GA. Basilar artery thrombosis: recanalization is the key. Stroke. 2006;37(9):2440. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16888267).

    Article  PubMed  Google Scholar 

  208. Hacke W, Zeumer H, Ferbert A, Bruckmann H, del Zoppo GJ. Intra-arterial thrombolytic therapy improves outcome in patients with acute vertebrobasilar occlusive disease. Stroke. 1988;19(10):1216–22. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3176080).

    Article  CAS  PubMed  Google Scholar 

  209. Wang H, Fraser K, Wang D, Alvernia J, Lanzino G. Successful intra-arterial basilar artery thrombolysis in a patient with bilateral vertebral artery occlusion: technical case report. Neurosurgery. 2005;57(4 Suppl):E398; discussion E398. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16234653).

    PubMed  Google Scholar 

  210. Lindsberg PJ, Mattle HP. Therapy of basilar artery occlusion: a systematic analysis comparing intra-arterial and intravenous thrombolysis. Stroke. 2006;37(3):922–8. https://doi.org/10.1161/01.STR.0000202582.29510.6b.

    Article  PubMed  Google Scholar 

  211. Rangaraju S, Jovin TG, Frankel M, et al. Neurologic examination at 24 to 48 hours predicts functional outcomes in basilar artery occlusion stroke. Stroke. 2016;47(10):2534–40. https://doi.org/10.1161/STROKEAHA.116.014567.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Meinel TR, Kaesmacher J, Chaloulos-Iakovidis P, et al. Mechanical thrombectomy for basilar artery occlusion: efficacy, outcomes, and futile recanalization in comparison with the anterior circulation. J Neurointerv Surg. 2019;11(12):1174–80. https://doi.org/10.1136/neurintsurg-2018-014516.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Kim YS, Garami Z, Mikulik R, Molina CA, Alexandrov AV, Collaborators C. Early recanalization rates and clinical outcomes in patients with tandem internal carotid artery/middle cerebral artery occlusion and isolated middle cerebral artery occlusion. Stroke. 2005;36(4):869–71. https://doi.org/10.1161/01.STR.0000160007.57787.4c.

    Article  PubMed  Google Scholar 

  214. Maus V, Borggrefe J, Behme D, et al. Order of treatment matters in ischemic stroke: mechanical thrombectomy first, then carotid artery stenting for tandem lesions of the anterior circulation. Cerebrovasc Dis. 2018;46(1-2):59–65. https://doi.org/10.1159/000492158.

    Article  PubMed  Google Scholar 

  215. Heck DV, Brown MD. Carotid stenting and intracranial thrombectomy for treatment of acute stroke due to tandem occlusions with aggressive antiplatelet therapy may be associated with a high incidence of intracranial hemorrhage. J Neurointerv Surg. 2015;7(3):170–5. https://doi.org/10.1136/neurintsurg-2014-011224.

    Article  PubMed  Google Scholar 

  216. Zhu F, Labreuche J, Haussen DC, et al. Hemorrhagic transformation after thrombectomy for tandem occlusions. Stroke. 2019;50(2):516–9. https://doi.org/10.1161/STROKEAHA.118.023689.

    Article  PubMed  Google Scholar 

  217. Anadani M, Marnat G, Consoli A, et al. Endovascular therapy of anterior circulation tandem occlusions: pooled analysis from the TITAN and ETIS registries. Stroke. 2021;52(10):3097–105. https://doi.org/10.1161/STROKEAHA.120.033032.

    Article  PubMed  Google Scholar 

  218. Nesbit GM, Clark WM, O'Neill OR, Barnwell SL. Intracranial intraarterial thrombolysis facilitated by microcatheter navigation through an occluded cervical internal carotid artery. J Neurosurg. 1996;84(3):387–92. (http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=8609548).

    Article  CAS  PubMed  Google Scholar 

  219. Hui FK, Hussain MS, Elgabaly MH, Sivapatham T, Katzan IL, Spiotta AM. Embolic protection devices and the Penumbra 054 catheter: utility in tandem occlusions in acute ischemic stroke. J Neurointerv Surg. 2011;3(1):50–3. https://doi.org/10.1136/jnis.2010.003012.

    Article  PubMed  Google Scholar 

  220. Fisher CM, Ojemann RG, Roberson GH. Spontaneous dissection of cervico-cerebral arteries. Can J Neurol Sci. 1978;5(1):9–19. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=647502).

    Article  CAS  PubMed  Google Scholar 

  221. Steinhubl SR, Talley JD, Braden GA, et al. Point-of-care measured platelet inhibition correlates with a reduced risk of an adverse cardiac event after percutaneous coronary intervention: results of the GOLD (AU-Assessing Ultegra) multicenter study. Circulation. 2001;103(21):2572–8. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11382726).

    Article  CAS  PubMed  Google Scholar 

  222. Quinn MJ, Plow EF, Topol EJ. Platelet Glycoprotein IIb/IIIa Inhibitors: Recognition of a Two-Edged Sword? Circulation. 2002;106(3):379–85. https://doi.org/10.1161/01.cir.0000019581.22812.b2.

    Article  CAS  PubMed  Google Scholar 

  223. Kleinman N. Assessing platelet function in clinical trials. In: Quinn M, Fitzgerald D, editors. Platelet function. Assessment, diagnosis, and treatment. Totowa, NJ: Humana Press; 2005. p. 369–84.

    Chapter  Google Scholar 

  224. Alexander MJ, Zauner A, Chaloupka JC, et al. WEAVE trial: final results in 152 on-label patients. Stroke. 2019;50(4):889–94. https://doi.org/10.1161/STROKEAHA.118.023996.

    Article  PubMed  Google Scholar 

  225. Tschoe C. Outcomes after intracranial rescue stenting for acute ischemic stroke. Stroke Vasc Intervent Neurol. 2022;2(4) https://doi.org/10.1161/SVIN.121.000129.

  226. Baek JH, Kim BM, Kim DJ, Heo JH, Nam HS, Yoo J. Stenting as a rescue treatment after failure of mechanical thrombectomy for anterior circulation large artery occlusion. Stroke. 2016;47(9):2360–3. https://doi.org/10.1161/STROKEAHA.116.014073.

    Article  PubMed  Google Scholar 

  227. Fitzsimmons BFM, Becske T, Nelson PK. Rapid stent-supported revascularization in acute ischemic stroke. AJNR Am J Neuroradiol. 2006;27(5):1132–4. (http://www.ajnr.org/cgi/content/abstract/27/5/1132).

    PubMed  PubMed Central  Google Scholar 

  228. Kessler IM, Mounayer C, Piotin M, Spelle L, Vanzin JR, Moret J. The use of balloon-expandable stents in the management of intracranial arterial diseases: a 5-year single-center experience. AJNR Am J Neuroradiol. 2005;26(9):2342–8. (http://www.ajnr.org/cgi/content/abstract/26/9/2342).

    PubMed  PubMed Central  Google Scholar 

  229. Kiyosue H, Okahara M, Yamashita M, Nagatomi H, Nakamura N, Mori H. Endovascular stenting for restenosis of the intracranial vertebrobasilar artery after balloon angioplasty: two case reports and review of the literature. Cardiovasc Intervent Radiol. 2004;27(5):538–43. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15129329).

    Article  PubMed  Google Scholar 

  230. Cross DT 3rd, Moran CJ, Akins PT, Angtuaco EE, Derdeyn CP, Diringer MN. Collateral circulation and outcome after basilar artery thrombolysis. AJNR Am J Neuroradiol. 1998;19(8):1557–63. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9763394).

    PubMed  PubMed Central  Google Scholar 

  231. Nakayama T, Tanaka K, Kaneko M, Yokoyama T, Uemura K. Thrombolysis and angioplasty for acute occlusion of intracranial vertebrobasilar arteries. Report of three cases. J Neurosurg. 1998;88(5):919–22. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9576265).

    Article  CAS  PubMed  Google Scholar 

  232. Mori T, Kazita K, Mima T, Mori K. Balloon angioplasty for embolic total occlusion of the middle cerebral artery and ipsilateral carotid stenting in an acute stroke stage. AJNR Am J Neuroradiol. 1999;20(8):1462–4. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10512230).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Ringer AJ, Qureshi AI, Fessler RD, Guterman LR, Hopkins LN. Angioplasty of intracranial occlusion resistant to thrombolysis in acute ischemic stroke. Neurosurgery. 2001;48(6):1282–90. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11383731).

    CAS  PubMed  Google Scholar 

  234. Shi ZS, Liebeskind DS, Loh Y, et al. Predictors of subarachnoid hemorrhage in acute ischemic stroke with endovascular therapy. Stroke. 2010;41(12):2775–81. https://doi.org/10.1161/STROKEAHA.110.587063.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Leavitt JA, Larson TA, Hodge DO, Gullerud RE. The incidence of central retinal artery occlusion in Olmsted County, Minnesota. Am J Ophthalmol. 2011. (In Eng).; https://doi.org/10.1016/j.ajo.2011.05.005.

  236. Hayreh SS, Zimmerman MB, Kimura A, Sanon A. Central retinal artery occlusion. Retinal survival time. Exp Eye Res. 2004;78(3):723–36. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15106952).

    Article  CAS  PubMed  Google Scholar 

  237. Beatty S, Au Eong KG. Local intra-arterial fibrinolysis for acute occlusion of the central retinal artery: a meta-analysis of the published data. Br J Ophthalmol. 2000;84(8):914–6. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10906103).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Weber J, Remonda L, Mattle HP, et al. Selective intra-arterial fibrinolysis of acute central retinal artery occlusion. Stroke. 1998;29(10):2076–9. (http://stroke.ahajournals.org/cgi/content/abstract/29/10/2076).

    Article  CAS  PubMed  Google Scholar 

  239. Butz B, Strotzer M, Manke C, Roider J, Link J, Lenhart M. Selective intraarterial fibrinolysis of acute central retinal artery occlusion. Acta Radiol. 2003;44(6):680–4. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14616215).

    Article  CAS  PubMed  Google Scholar 

  240. Arnold M, Koerner U, Remonda L, et al. Comparison of intra-arterial thrombolysis with conventional treatment in patients with acute central retinal artery occlusion. J Neurol Neurosurg Psychiatry. 2005;76(2):196–9. https://doi.org/10.1136/jnnp.2004.037135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Schmidt DP, Schulte-Monting J, Schumacher M. Prognosis of central retinal artery occlusion: local intraarterial fibrinolysis versus conservative treatment. AJNR Am J Neuroradiol. 2002;23(8):1301–7. (http://www.ajnr.org/cgi/content/abstract/23/8/1301).

    PubMed  PubMed Central  Google Scholar 

  242. Aldrich EM, Lee AW, Chen CS, et al. Local intraarterial fibrinolysis administered in aliquots for the treatment of central retinal artery occlusion: the Johns Hopkins Hospital experience. Stroke. 2008;39(6):1746–50. (Clinical Trial Comparative Study) (In Eng). https://doi.org/10.1161/STROKEAHA.107.505404.

    Article  PubMed  Google Scholar 

  243. Mueller AJ, Neubauer AS, Schaller U, Kampik A. Evaluation of minimally invasive therapies and rationale for a prospective randomized trial to evaluate selective intra-arterial lysis for clinically complete central retinal artery occlusion. Arch Ophthalmol. 2003;121(10):1377–81. (Research Support, Non-U.S. Gov't) (In Eng). https://doi.org/10.1001/archopht.121.10.1377.

    Article  PubMed  Google Scholar 

  244. Fraser SG, Adams W. Interventions for acute non-arteritic central retinal artery occlusion. Cochrane Database Syst Rev. 2009;(1):CD001989. (Review) (In Eng). https://doi.org/10.1002/14651858.CD001989.pub2.

  245. Schmidt D, Schumacher M, Wakhloo AK. Microcatheter urokinase infusion in central retinal artery occlusion. Am J Ophthalmol. 1992;113(4):429–34. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1558118).

    Article  CAS  PubMed  Google Scholar 

  246. Atebara NH, Brown GC, Cater J. Efficacy of anterior chamber paracentesis and Carbogen in treating acute nonarteritic central retinal artery occlusion. Ophthalmology. 1995;102(12):2029–34. discussion 2034–5. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9098313).

    Article  CAS  PubMed  Google Scholar 

  247. Schumacher M, Schmidt D, Jurklies B, et al. Central retinal artery occlusion: local intra-arterial fibrinolysis versus conservative treatment, a multicenter randomized trial. Ophthalmology. 2010;117(7):1367–1375.e1. (http://linkinghub.elsevier.com/retrieve/pii/S0161642010003805?showall=true).

    Article  PubMed  Google Scholar 

  248. Ros MA, Magargal LE, Uram M. Branch retinal-artery obstruction: a review of 201 eyes. Ann Ophthalmol. 1989;21(3):103–7. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2735694).

    CAS  PubMed  Google Scholar 

  249. Paques M, Vallee JN, Herbreteau D, et al. Superselective ophthalmic artery fibrinolytic therapy for the treatment of central retinal vein occlusion. Br J Ophthalmol. 2000;84(12):1387–91. https://doi.org/10.1136/bjo.84.12.1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Kilani R, Marshall L, Koch S, Fernandez M, Postel E. DWI findings of optic nerve ischemia in the setting of central retinal artery occlusion. J Neuroimag. 2011. (In Eng).; https://doi.org/10.1111/j.1552-6569.2011.00601.x.

  251. Feltgen N, Neubauer A, Jurklies B, et al. Multicenter study of the European Assessment Group for Lysis in the Eye (EAGLE) for the treatment of central retinal artery occlusion: design issues and implications. EAGLE Study report no. 1 : EAGLE Study report no. 1. Graefes Arch Clin Exp Ophthalmol. 2006;244(8):950–6. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16372192).

    Article  CAS  PubMed  Google Scholar 

  252. Richard G, Lerche RC, Knospe V, Zeumer H. Treatment of retinal arterial occlusion with local fibrinolysis using recombinant tissue plasminogen activator. Ophthalmology. 1999;106(4):768–73. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10201601).

    Article  CAS  PubMed  Google Scholar 

  253. Hayreh SS. Acute retinal arterial occlusive disorders. Progr Retin Eye Res. 2011;30(5):359–94. (In Eng). https://doi.org/10.1016/j.preteyeres.2011.05.001.

    Article  Google Scholar 

  254. Beatty S, Au Eong KG. Acute occlusion of the retinal arteries: current concepts and recent advances in diagnosis and management. J Accid Emerg Med. 2000;17(5):324–9. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11005400).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Chen CS, Lee AW, Campbell B, et al. Efficacy of intravenous tissue-type plasminogen activator in central retinal artery occlusion: report from a randomized, controlled trial. Stroke. 2011;42(8):2229–34. (In Eng). https://doi.org/10.1161/STROKEAHA.111.613653.

    Article  CAS  PubMed  Google Scholar 

  256. Chalela JA, Kidwell CS, Nentwich LM, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007;369(9558):293–8. (Comparative Study Research Support, N.I.H., Intramural) (In Eng). https://doi.org/10.1016/S0140-6736(07)60151-2.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Wessels T, Wessels C, Ellsiepen A, et al. Contribution of diffusion-weighted imaging in determination of stroke etiology. AJNR Am J Neuroradiol. 2006;27(1):35–9. (In Eng) (http://www.ncbi.nlm.nih.gov/pubmed/16418352).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. von Kummer R, Bourquain H, Bastianello S, et al. Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology. 2001;219(1):95–100. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11274542).

    Article  Google Scholar 

  259. Mullins ME, Schaefer PW, Sorensen AG, et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology. 2002;224(2):353–60. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12147827).

    Article  PubMed  Google Scholar 

  260. Lansberg MG, Albers GW, Beaulieu C, Marks MP. Comparison of diffusion-weighted MRI and CT in acute stroke. Neurology. 2000;54(8):1557–61. (Clinical Trial Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.) (In Eng) (http://www.ncbi.nlm.nih.gov/pubmed/10762493).

    Article  CAS  PubMed  Google Scholar 

  261. Larrue V, von Kummer RR, Muller A, Bluhmki E. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke. 2001;32(2):438–41. (Research Support, Non-U.S. Gov't) (In Eng) (http://www.ncbi.nlm.nih.gov/pubmed/11157179)

    Article  CAS  PubMed  Google Scholar 

  262. Kasner SE, Demchuk AM, Berrouschot J, et al. Predictors of fatal brain edema in massive hemispheric ischemic stroke. Stroke. 2001;32(9):2117–23. (Multicenter Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.) (In Eng) (http://www.ncbi.nlm.nih.gov/pubmed/11546905)

    Article  CAS  PubMed  Google Scholar 

  263. Menon BK, Puetz V, Kochar P, Demchuk AM. ASPECTS and other neuroimaging scores in the triage and prediction of outcome in acute stroke patients. Neuroimaging Clin N Am. 2011;21(2):407–23., xii. (Research Support, Non-U.S. Gov't) (In Eng). https://doi.org/10.1016/j.nic.2011.01.007.

    Article  PubMed  Google Scholar 

  264. Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet. 2000;355(9216):1670–4. (In Eng) (http://www.ncbi.nlm.nih.gov/pubmed/10905241).

    Article  CAS  PubMed  Google Scholar 

  265. Castillo PR, Miller DA, Meschia JF. Choice of neuroimaging in perioperative acute stroke management. Neurol Clin. 2006;24(4):807–20. (Review) (In Eng). https://doi.org/10.1016/j.ncl.2006.05.004.

    Article  PubMed  Google Scholar 

  266. von Kummer R, Nolte PN, Schnittger H, Thron A, Ringelstein EB. Detectability of cerebral hemisphere ischaemic infarcts by CT within 6 h of stroke. Neuroradiology. 1996;38(1):31–3. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8773271).

    Article  Google Scholar 

  267. Truwit CL, Barkovich AJ, Gean-Marton A, Hibri N, Norman D. Loss of the insular ribbon: another early CT sign of acute middle cerebral artery infarction. Radiology. 1990;176(3):801–6. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2389039).

    Article  CAS  PubMed  Google Scholar 

  268. Tomura N, Uemura K, Inugami A, Fujita H, Higano S, Shishido F. Early CT finding in cerebral infarction: obscuration of the lentiform nucleus. Radiology. 1988;168(2):463–7. (In Eng) (http://www.ncbi.nlm.nih.gov/pubmed/3393665

    Article  CAS  PubMed  Google Scholar 

  269. Barber PA, Demchuk AM, Hudon ME, Pexman JH, Hill MD, Buchan AM. Hyperdense sylvian fissure MCA “dot” sign: a CT marker of acute ischemia. Stroke. 2001;32(1):84–8. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11136919).

    Article  CAS  PubMed  Google Scholar 

  270. Leary MC, Kidwell CS, Villablanca JP, et al. Validation of computed tomographic middle cerebral artery “dot” sign: an angiographic correlation study. Stroke. 2003;34(11):2636–40. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14593125).

    Article  PubMed  Google Scholar 

  271. Koga M, Saku Y, Toyoda K, Takaba H, Ibayashi S, Iida M. Reappraisal of early CT signs to predict the arterial occlusion site in acute embolic stroke. J Neurol Neurosurg Psychiatry. 2003;74(5):649–53. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12700311).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Selim MH, Molina CA. Conundra of the penumbra and acute stroke imaging. Stroke. 2011;42(9):2670–1. (Review) (In Eng). https://doi.org/10.1161/STROKEAHA.111.631242.

    Article  PubMed  Google Scholar 

  273. Lev MH, Farkas J, Rodriguez VR, et al. CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr. 2001;25(4):520–8. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11473180).

    Article  CAS  PubMed  Google Scholar 

  274. Verro P, Tanenbaum LN, Borden NM, Sen S, Eshkar N. CT angiography in acute ischemic stroke: preliminary results. Stroke. 2002;33(1):276–8. https://doi.org/10.1161/hs0102.101223.

    Article  CAS  PubMed  Google Scholar 

  275. Wildermuth S, Knauth M, Brandt T, Winter R, Sartor K, Hacke W. Role of CT angiography in patient selection for thrombolytic therapy in acute hemispheric stroke. Stroke. 1998;29(5):935–8. (http://stroke.ahajournals.org/cgi/content/abstract/29/5/935).

    Article  CAS  PubMed  Google Scholar 

  276. Graf J, Skutta B, Kuhn FP, Ferbert A. Computed tomographic angiography findings in 103 patients following vascular events in the posterior circulation: potential and clinical relevance. J Neurol. 2000;247(10):760–6. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11127530).

    Article  CAS  PubMed  Google Scholar 

  277. Wintermark M, Meuli R, Browaeys P, et al. Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology. 2007;68(9):694–7. https://doi.org/10.1212/01.wnl.0000255959.30107.08.

    Article  CAS  PubMed  Google Scholar 

  278. Coutts SB, Lev MH, Eliasziw M, et al. ASPECTS on CTA source images versus unenhanced CT: added value in predicting final infarct extent and clinical outcome. Stroke. 2004;35(11):2472–6. (Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.) (In Eng). https://doi.org/10.1161/01.STR.0000145330.14928.2a.

    Article  PubMed  Google Scholar 

  279. Camargo EC, Furie KL, Singhal AB, et al. Acute brain infarct: detection and delineation with CT angiographic source images versus nonenhanced CT scans. Radiology. 2007;244(2):541–8. (Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't) (In Eng). https://doi.org/10.1148/radiol.2442061028.

    Article  PubMed  Google Scholar 

  280. Menon BK, d'Esterre CD, Qazi EM, et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology. 2015;275(2):510–20. https://doi.org/10.1148/radiol.15142256.

    Article  PubMed  Google Scholar 

  281. Axel L. Cerebral blood flow determination by rapid sequence computed tomography. Radiology. 1980;137:679–86.

    Article  CAS  PubMed  Google Scholar 

  282. Mies G, Ishimaru S, Xie Y, Seo K, Hossmann KA. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab. 1991;11(5):753–61. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1874807).

    Article  CAS  PubMed  Google Scholar 

  283. Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977;8(1):51–7. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=13521).

    Article  CAS  PubMed  Google Scholar 

  284. Morawetz RB, Crowell RH, DeGirolami U, Marcoux FW, Jones TH, Halsey JH. Regional cerebral blood flow thresholds during cerebral ischemia. Fed Proc. 1979;38(11):2493–4. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=114427).

    CAS  PubMed  Google Scholar 

  285. Morawetz RB, DeGirolami U, Ojemann RG, Marcoux FW, Crowell RM. Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occlusion in unanesthetized monkeys. Stroke. 1978;9(2):143–9. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=417429).

    Article  CAS  PubMed  Google Scholar 

  286. Sakai F, Nakazawa K, Tazaki Y, et al. Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab. 1985;5(2):207–13. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3921557).

    Article  CAS  PubMed  Google Scholar 

  287. Muizelaar JP, Fatouros PP, Schroder ML. A new method for quantitative regional cerebral blood volume measurements using computed tomography. Stroke. 1997;28(10):1998–2005. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9341710).

    Article  CAS  PubMed  Google Scholar 

  288. Nabavi DG, Cenic A, Dool J, et al. Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J Comput Assist Tomogr. 1999;23(4):506–15. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10433275).

    Article  CAS  PubMed  Google Scholar 

  289. Hatazawa J, Shimosegawa E, Toyoshima H, et al. Cerebral blood volume in acute brain infarction: a combined study with dynamic susceptibility contrast MRI and 99mTc-HMPAO-SPECT. Stroke. 1999;30(4):800–6. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10187882).

    Article  CAS  PubMed  Google Scholar 

  290. Todd NV, Picozzi P, Crockard HA. Quantitative measurement of cerebral blood flow and cerebral blood volume after cerebral ischaemia. J Cereb Blood Flow Metab. 1986;6(3):338–41. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3711160).

    Article  CAS  PubMed  Google Scholar 

  291. Latchaw RE, Yonas H, Hunter GJ, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke. 2003;34(4):1084–104. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12677088).

    Article  PubMed  Google Scholar 

  292. Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: theoretic basis. AJNR Am J Neuroradiol. 2009;30(4):662–8. (Review) (In Eng). https://doi.org/10.3174/ajnr.A1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Klotz E, Konig M. Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol. 1999;30:170–84.

    Article  CAS  PubMed  Google Scholar 

  294. Miles K. Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol. 1991;64:409–12.

    Article  CAS  PubMed  Google Scholar 

  295. Koenig M, Klotz E, Heuser L. Perfusion CT in acute stroke: characterization of cerebral ischemia using parameter images of cerebral blood flow and their therapeutic relevance. Electromedica. 1998;66:61–6.

    Google Scholar 

  296. Steiger HJ, Aaslid R, Stooss R. Dynamic computed tomographic imaging of regional cerebral blood flow and blood volume. A clinical pilot study. Stroke. 1993;24(4):591–7. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8465367).

    Article  CAS  PubMed  Google Scholar 

  297. Hunter GJ, Hamberg LM, Ponzo JA, et al. Assessment of cerebral perfusion and arterial anatomy in hyperacute stroke with three-dimensional functional CT: early clinical results. AJNR Am J Neuroradiol. 1998;19(1):29–37. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9432154).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Wintermark M, Maeder P, Thiran JP, Schnyder P, Meuli R. Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol. 2001;11(7):1220–30. (Review) (In Eng) (http://www.ncbi.nlm.nih.gov/pubmed/11471616)

    Article  CAS  PubMed  Google Scholar 

  299. Gobbel G, Cann C, Fike J. Measurement of regional cerebral blood flow using ultrafast computed tomography. Theoretical aspects. Stroke. 1991;22:768–71.

    Article  CAS  PubMed  Google Scholar 

  300. Gobbel GT, Cann CE, Fike JR. Comparison of xenon-enhanced CT with ultrafast CT for measurement of regional cerebral blood flow. AJNR Am J Neuroradiol. 1993;14(3):543–50. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8517339).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Wintermark M, Thiran JP, Maeder P, Schnyder P, Meuli R. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol. 2001;22(5):905–14. (http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11337336).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Gillard JH, Minhas PS, Hayball MP, et al. Assessment of quantitative computed tomographic cerebral perfusion imaging with H2(15)O positron emission tomography. Neurol Res. 2000;22(5):457–64. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10935216).

    Article  CAS  PubMed  Google Scholar 

  303. Kudo K, Terae S, Katoh C, et al. Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. AJNR Am J Neuroradiol. 2003;24(3):419–26.

    PubMed  PubMed Central  Google Scholar 

  304. Nabavi DG, Cenic A, Craen RA, et al. CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology. 1999;213(1):141–9. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10540654).

    Article  CAS  PubMed  Google Scholar 

  305. Nabavi DG, Cenic A, Henderson S, Gelb AW, Lee TY. Perfusion mapping using computed tomography allows accurate prediction of cerebral infarction in experimental brain ischemia. Stroke. 2001;32(1):175–83.

    Article  CAS  PubMed  Google Scholar 

  306. Hamberg LM, Hunter GJ, Maynard KI, et al. Functional CT perfusion imaging in predicting the extent of cerebral infarction from a 3-hour middle cerebral arterial occlusion in a primate stroke model. AJNR Am J Neuroradiol. 2002;23(6):1013–21.

    PubMed  PubMed Central  Google Scholar 

  307. Roberts H. Neuroimaging techniques in cerebrovascular disease: computed tomography angiography/computed tomography perfusion. Semin Cerebrovasc Dis Stroke. 2001;1:303–16.

    Article  Google Scholar 

  308. Kamalian S, Maas MB, Goldmacher GV, et al. CT cerebral blood flow maps optimally correlate with admission diffusion-weighted imaging in acute stroke but thresholds vary by postprocessing platform. Stroke. 2011;42(7):1923–8. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't) (In Eng). https://doi.org/10.1161/STROKEAHA.110.610618.

    Article  PubMed  PubMed Central  Google Scholar 

  309. Rother J, Jonetz-Mentzel L, Fiala A, et al. Hemodynamic assessment of acute stroke using dynamic single-slice computed tomographic perfusion imaging. Arch Neurol. 2000;57(8):1161–6. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10927796).

    Article  CAS  PubMed  Google Scholar 

  310. Koenig M, Kraus M, Theek C, Klotz E, Gehlen W, Heuser L. Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke. 2001;32(2):431–7. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11157178).

    Article  CAS  PubMed  Google Scholar 

  311. Sorensen AG. What is the meaning of quantitative CBF? AJNR Am J Neuroradiol. 2001;22(2):235–6. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11156759).

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Tomandl BF, Klotz E, Handschu R, et al. Comprehensive imaging of ischemic stroke with multisection CT. Radiographics. 2003;23(3):565–92. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12740462).

    Article  PubMed  Google Scholar 

  313. Wintermark M, Flanders AE, Velthuis B, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37(4):979–85. https://doi.org/10.1161/01.str.0000209238.61459.39.

    Article  PubMed  Google Scholar 

  314. Eastwood JD, Lev MH, Azhari T, et al. CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology. 2002;222(1):227–36. (http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11756730).

    Article  PubMed  Google Scholar 

  315. Mayer TE, Hamann GF, Baranczyk J, et al. Dynamic CT perfusion imaging of acute stroke. AJNR Am J Neuroradiol. 2000;21(8):1441–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Wintermark M, Reichhart M, Thiran JP, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol. 2002;51(4):417–32. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11921048).

    Article  PubMed  Google Scholar 

  317. Chamorro A, Sacco RL, Mohr JP, et al. Clinical-computed tomographic correlations of lacunar infarction in the Stroke Data Bank. Stroke. 1991;22(2):175–81. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2003281).

    Article  CAS  PubMed  Google Scholar 

  318. Derex L, Tomsick TA, Brott TG, et al. Outcome of stroke patients without angiographically revealed arterial occlusion within four hours of symptom onset. AJNR Am J Neuroradiol. 2001;22(4):685–90. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11290479).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Ezzeddine MA, Lev MH, McDonald CT, et al. CT angiography with whole brain perfused blood volume imaging: added clinical value in the assessment of acute stroke. Stroke. 2002;33(4):959–66. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11935044).

    Article  PubMed  Google Scholar 

  320. Koroshetz WJ, Lev MH. Contrast computed tomography scan in acute stroke: “You can’t always get what you want but…you get what you need”. Ann Neurol. 2002;51(4):415–6. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11921047).

    Article  PubMed  Google Scholar 

  321. Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY. Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiol. 1999;20(1):63–73. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9974059).

    CAS  PubMed  Google Scholar 

  322. Campbell BC, Christensen S, Levi CR, et al. Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke. 2011. (In Eng); https://doi.org/10.1161/STROKEAHA.111.618355.

  323. Wintermark M, Reichhart M, Cuisenaire O, et al. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke. 2002;33(8):2025–31. (http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=12154257).

    Article  CAS  PubMed  Google Scholar 

  324. Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging. 2010;32(5):1024–37. https://doi.org/10.1002/jmri.22338.

    Article  PubMed  PubMed Central  Google Scholar 

  325. Mokin M, Levy EI, Saver JL, et al. Predictive value of RAPID assessed perfusion thresholds on final infarct volume in SWIFT PRIME (solitaire with the intention for thrombectomy as primary endovascular treatment). Stroke. 2017;48(4):932–8. https://doi.org/10.1161/STROKEAHA.116.015472.

    Article  PubMed  Google Scholar 

  326. Zhao L, Barlinn K, Bag AK, et al. Computed tomography perfusion prognostic maps do not predict reversible and irreversible neurological dysfunction following reperfusion therapies. Int J Stroke. 2011;6(6):544–6. https://doi.org/10.1111/j.1747-4949.2011.00681.x.

    Article  PubMed  Google Scholar 

  327. Kohrmann M, Struffert T, Frenzel T, Schwab S, Doerfler A. The hyperintense acute reperfusion marker on fluid-attenuated inversion recovery magnetic resonance imaging is caused by gadolinium in the cerebrospinal fluid. Stroke. 2012;43(1):259–61. https://doi.org/10.1161/STROKEAHA.111.632356.

    Article  PubMed  Google Scholar 

  328. Li F, Silva MD, Sotak CH, Fisher M. Temporal evolution of ischemic injury evaluated with diffusion-, perfusion-, and T2-weighted MRI. Neurology. 2000;54(3):689–96. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10680805).

    Article  CAS  PubMed  Google Scholar 

  329. Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14(2):330–46. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2345513).

    Article  CAS  PubMed  Google Scholar 

  330. Kunst MM, Schaefer PW. Ischemic stroke. Radiol Clin North Am. 2011;49(1):1–26. (Review) (In Eng). https://doi.org/10.1016/j.rcl.2010.07.010.

    Article  PubMed  Google Scholar 

  331. Davis DP, Robertson T, Imbesi SG. Diffusion-weighted magnetic resonance imaging versus computed tomography in the diagnosis of acute ischemic stroke. J Emerg Med. 2006;31(3):269–77. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16982360).

    Article  PubMed  Google Scholar 

  332. Stadnik T, Luypaert R, Jager T, Osteaux M. Diffusion imaging: from basic physics to practical imaging. RSNA. http://ej.rsna.org/ej3/0095-98.fin/index.htm

  333. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45. (Review) (In Eng) (http://www.ncbi.nlm.nih.gov/pubmed/11058626).

    Article  CAS  PubMed  Google Scholar 

  334. Lansberg MG, Thijs VN, O'Brien MW, et al. Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. AJNR Am J Neuroradiol. 2001;22(4):637–44. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11290470).

    CAS  PubMed  PubMed Central  Google Scholar 

  335. Lovblad KO, Bassetti C, Schneider J, et al. Diffusion-weighted mr in cerebral venous thrombosis. Cerebrovasc Dis. 2001;11(3):169–76. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11306763).

    Article  CAS  PubMed  Google Scholar 

  336. Sitburana O, Koroshetz WJ. Magnetic resonance imaging: implication in acute ischemic stroke management. Curr Atheroscler Rep. 2005;7(4):305–12. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15975324).

    Article  PubMed  Google Scholar 

  337. Gass A, Ay H, Szabo K, Koroshetz WJ. Diffusion-weighted MRI for the “small stuff”: the details of acute cerebral ischaemia. Lancet Neurol. 2004;3(1):39–45. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14693110).

    Article  PubMed  Google Scholar 

  338. Easton JD, Saver JL, Albers GW, et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke. 2009;40(6):2276–93. (Review) (In Eng). https://doi.org/10.1161/STROKEAHA.108.192218.

    Article  PubMed  Google Scholar 

  339. Ay H, Koroshetz WJ, Benner T, et al. Transient ischemic attack with infarction: a unique syndrome? Ann Neurol. 2005;57(5):679–86. (Research Support, N.I.H., Extramural Research Support, U.S. Gov't, P.H.S.) (In Eng). https://doi.org/10.1002/ana.20465.

    Article  PubMed  Google Scholar 

  340. Baird AE, Warach S. Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab. 1998;18(6):583–609. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9626183).

    Article  CAS  PubMed  Google Scholar 

  341. Schwamm LH, Koroshetz WJ, Sorensen AG, et al. Time course of lesion development in patients with acute stroke: serial diffusion- and hemodynamic-weighted magnetic resonance imaging. Stroke. 1998;29(11):2268–76. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9804633).

    Article  CAS  PubMed  Google Scholar 

  342. Fiehler J, Knudsen K, Kucinski T, et al. Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke. 2004;35(2):514–9. https://doi.org/10.1161/01.str.0000114873.28023.c2.

    Article  PubMed  Google Scholar 

  343. Desmond PM, Lovell AC, Rawlinson AA, et al. The value of apparent diffusion coefficient maps in early cerebral ischemia. AJNR Am J Neuroradiol 2001;22(7):1260-1267. (http://www.ajnr.org/cgi/content/abstract/22/7/1260).

  344. Kidwell CS, Saver JL, Mattiello J, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol. 2000;47(4):462–9. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10762157).

    Article  CAS  PubMed  Google Scholar 

  345. Thijs VN, Somford DM, Bammer R, Robberecht W, Moseley ME, Albers GW. Influence of arterial input function on hypoperfusion volumes measured with perfusion-weighted imaging. Stroke. 2004;35(1):94–8. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14671249).

    Article  PubMed  Google Scholar 

  346. Rivers CS, Wardlaw JM, Armitage PA, et al. Do acute diffusion- and perfusion-weighted MRI lesions identify final infarct volume in ischemic stroke? Stroke. 2006;37(1):98–104. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16322499).

    Article  CAS  PubMed  Google Scholar 

  347. Barber PA, Davis SM, Darby DG, et al. Absent middle cerebral artery flow predicts the presence and evolution of the ischemic penumbra. Neurology. 1999;52(6):1125–32. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10214732).

    Article  CAS  PubMed  Google Scholar 

  348. Staroselskaya IA, Chaves C, Silver B, et al. Relationship between magnetic resonance arterial patency and perfusion-diffusion mismatch in acute ischemic stroke and its potential clinical use. Arch Neurol. 2001;58(7):1069–74. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11448295).

    Article  CAS  PubMed  Google Scholar 

  349. Seitz RJ, Meisel S, Moll M, Wittsack HJ, Junghans U, Siebler M. Partial rescue of the perfusion deficit area by thrombolysis. J Magn Reson Imaging. 2005;22(2):199–205. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16028252).

    Article  PubMed  Google Scholar 

  350. Sandhu GS, Parikh PT, Hsu DP, Blackham KA, Tarr RW, Sunshine JL. Outcomes of intra-arterial thrombolytic treatment in acute ischemic stroke patients with a matched defect on diffusion and perfusion MR images. J Neurointervent Surg. 2011. (In Eng).; https://doi.org/10.1136/jnis.2010.004168.

  351. Sobesky J, Zaro Weber O, Lehnhardt FG, et al. Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke. 2004;35(12):2843–7. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15514190).

    Article  CAS  PubMed  Google Scholar 

  352. Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 2003;34(11):2729–35. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14576370).

    Article  PubMed  Google Scholar 

  353. Sorensen AG, Copen WA, Ostergaard L, et al. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology. 1999;210(2):519–27. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10207439).

    Article  CAS  PubMed  Google Scholar 

  354. Parsons MW, Yang Q, Barber PA, et al. Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke. 2001;32(7):1581–7. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11441205).

    Article  CAS  PubMed  Google Scholar 

  355. Schaefer PW, Hunter GJ, He J, et al. Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging. AJNR Am J Neuroradiol. 2002;23(10):1785–94. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12427640).

    PubMed  PubMed Central  Google Scholar 

  356. Neumann-Haefelin T, Wittsack HJ, Wenserski F, et al. Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke. 1999;30(8):1591–7. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10436106).

    Article  CAS  PubMed  Google Scholar 

  357. Chalela JA, Kang DW, Luby M, et al. Early magnetic resonance imaging findings in patients receiving tissue plasminogen activator predict outcome: Insights into the pathophysiology of acute stroke in the thrombolysis era. Ann Neurol. 2004;55(1):105–12. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14705118).

    Article  PubMed  Google Scholar 

  358. Prince MR, Arnoldus C, Frisoli JK. Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imaging. 1996;6(1):162–6. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8851422).

    Article  CAS  PubMed  Google Scholar 

  359. Murphy KP, Szopinski KT, Cohan RH, Mermillod B, Ellis JH. Occurrence of adverse reactions to gadolinium-based contrast material and management of patients at increased risk: a survey of the American Society of Neuroradiology Fellowship Directors. Acad Radiol. 1999;6(11):656–64. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10894068).

    Article  CAS  PubMed  Google Scholar 

  360. Thomsen HS. Nephrogenic systemic fibrosis: A serious late adverse reaction to gadodiamide. Eur Radiol. 2006;16(12):2619–21. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17061066).

    Article  PubMed  PubMed Central  Google Scholar 

  361. Collidge TA, Thomson PC, Mark PB, et al. Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology. 2007:2451070353. https://doi.org/10.1148/radiol.2451070353.

  362. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology. 2007;242(3):647–9. https://doi.org/10.1148/radiol.2423061640.

    Article  PubMed  Google Scholar 

  363. Cowper SE, Boyer PJ. Nephrogenic systemic fibrosis: an update. Curr Rheumatol Rep. 2006;8(2):151–7. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16569375).

    Article  PubMed  Google Scholar 

  364. Stenver DI. Investigation of the safety of MRI contrast medium Omniscan. Danish Medicines Agency; 2006.

    Google Scholar 

  365. Cowper SE. Nephrogenic systemic fibrosis: the nosological and conceptual evolution of nephrogenic fibrosing dermopathy. Am J Kidney Dis. 2005;46(4):763–5. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16183434).

    Article  PubMed  Google Scholar 

  366. Barkovich AJ, Atlas SW. Magnetic resonance imaging of intracranial hemorrhage. Radiol Clin North Am. 1988;26(4):801–20. (Review) (In Eng). (http://www.ncbi.nlm.nih.gov/pubmed/3289075).

    Article  CAS  PubMed  Google Scholar 

  367. Hermier M, Nighoghossian N. Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke. 2004;35(8):1989–94. https://doi.org/10.1161/01.str.0000133341.74387.96.

    Article  PubMed  Google Scholar 

  368. Kidwell CS, Saver JL, Villablanca JP, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke. 2002;33(1):95–8. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11779895).

    Article  PubMed  Google Scholar 

  369. Fiehler J, Albers GW, Boulanger JM, et al. Bleeding risk analysis in stroke imaging before thromboLysis (BRASIL): pooled analysis of T2*-weighted magnetic resonance imaging data from 570 patients. Stroke. 2007;38(10):2738–44. (Clinical Trial Multicenter Study) (In Eng). https://doi.org/10.1161/STROKEAHA.106.480848.

    Article  PubMed  Google Scholar 

  370. Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. J Neurointerv Surg. 2020;12(2):156–64. https://doi.org/10.1136/neurintsurg-2019-015135.

    Article  PubMed  Google Scholar 

  371. Morey JR, Zhang X, Yaeger KA, et al. Real-world experience with artificial intelligence-based triage in transferred large vessel occlusion stroke patients. Cerebrovasc Dis. 2021;50(4):450–5. https://doi.org/10.1159/000515320.

    Article  PubMed  Google Scholar 

  372. Muir KW, Weir CJ, Murray GD, Povey C, Lees KR. Comparison of neurological scales and scoring systems for acute stroke prognosis. Stroke. 1996;27(10):1817–20. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8841337).

    Article  CAS  PubMed  Google Scholar 

  373. Brott T, Adams HP Jr, Olinger CP, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20(7):864–70. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2749846).

    Article  CAS  PubMed  Google Scholar 

  374. Goldstein LB, Bertels C, Davis JN. Interrater reliability of the NIH stroke scale. Arch Neurol. 1989;46(6):660–2. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2730378).

    Article  CAS  PubMed  Google Scholar 

  375. Adams HP Jr, Davis PH, Leira EC, et al. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology. 1999;53(1):126–31. (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10408548).

    Article  CAS  PubMed  Google Scholar 

  376. Kwiatkowski TG, Libman RB, Frankel M, et al. Effects of tissue plasminogen activator for acute ischemic stroke at one year. N Engl J Med. 1999;340(23):1781–7. https://doi.org/10.1056/nejm199906103402302.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Harrigan .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrigan, M.R., Deveikis, J.P. (2023). Treatment of Acute Ischemic Stroke. In: Handbook of Cerebrovascular Disease and Neurointerventional Technique. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-031-45598-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45598-8_8

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-45597-1

  • Online ISBN: 978-3-031-45598-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics