Skip to main content

Consistency Regularization Improves Placenta Segmentation in Fetal EPI MRI Time Series

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2023)

Abstract

The placenta plays a crucial role in fetal development. Automated 3D placenta segmentation from fetal EPI MRI holds promise for advancing prenatal care. This paper proposes an effective semi-supervised learning method for improving placenta segmentation in fetal EPI MRI time series. We introduce consistency regularization loss that promotes consistency under spatial transformation of the same image and temporal consistency across nearby images in a time series. The experimental results show that the method improves the overall segmentation accuracy and provides better performance for outliers and hard samples. The evaluation also indicates that our method improves the temporal coherency of the prediction, which could lead to more accurate computation of temporal placental biomarkers. This work contributes to the study of the placenta and prenatal clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abulnaga, S.M., Abaci Turk, E., Bessmeltsev, M., Grant, P.E., Solomon, J., Golland, P.: Placental flattening via volumetric parameterization. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 39–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_5

    Chapter  Google Scholar 

  2. Abulnaga, S.M., et al.: Automatic segmentation of the placenta in BOLD MRI time series. In: Licandro, R., Melbourne, A., Abaci Turk, E., Macgowan, C., Hutter, J. (eds.) International Workshop on Preterm, Perinatal and Paediatric Image Analysis, vol. 13575, pp. 1–12. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17117-8_1

  3. Alansary, A., et al.: Fast fully automatic segmentation of the human placenta from motion corrupted MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 589–597. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_68

    Chapter  Google Scholar 

  4. Baur, C., Albarqouni, S., Navab, N.: Semi-supervised deep learning for fully convolutional networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, 11–13 September 2017, Proceedings, Part III 20, vol. 10435, pp. 311–319. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_36

  5. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) Computer Vision-ECCV 2016 Workshops: Amsterdam, The Netherlands, 8–10 October and 15–16 October 2016, Proceedings, Part II 14, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

  6. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  7. Chicco, D.: Siamese neural networks: an overview. In: Artificial Neural Networks, pp. 73–94 (2021)

    Google Scholar 

  8. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds.) Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, 2–7 June 2019, Proceedings 26, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

  9. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, 25–30 June 2017, Proceedings 25, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. León, R.L., Li, K.T., Brown, B.P.: A retrospective segmentation analysis of placental volume by magnetic resonance imaging from first trimester to term gestation. Pediatr. Radiol. 48(13), 1936–1944 (2018)

    Article  Google Scholar 

  12. Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Trans. Neural Networks Learn. Syst. 32(2), 523–534 (2020)

    Google Scholar 

  13. Ren, M., Dey, N., Styner, M., Botteron, K., Gerig, G.: Local spatiotemporal representation learning for longitudinally-consistent neuroimage analysis. Adv. Neural. Inf. Process. Syst. 35, 13541–13556 (2022)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  15. Sokloska, M., et al.: Placental image analysis using coupled diffusion-weighted and multi-echo T2 MRI and a multi-compartment model. In: MICCAI Workshop on Perinatal, Preterm and Paediatric Image Analysis (PIPPI) (2016)

    Google Scholar 

  16. Taleb, A., et al.: 3D self-supervised methods for medical imaging. Adv. Neural. Inf. Process. Syst. 33, 18158–18172 (2020)

    Google Scholar 

  17. Tang, Y., et al.: Self-supervised pre-training of Swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)

    Google Scholar 

  18. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. Xia, J., He, Y., Yin, X., Han, S., Gu, X.: Direct-product volumetric parameterization of handlebodies via harmonic fields. In: Shape Modeling International Conference, pp. 3–12. IEEE (2010)

    Google Scholar 

  20. Xu, J., et al.: Semi-supervised learning for fetal brain MRI quality assessment with ROI consistency. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October 2020, Proceedings, Part VI 23, vol. 12266, pp. 386–395. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_37

  21. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: 33rd Annual Meeting of the Association for Computational Linguistics, pp. 189–196 (1995)

    Google Scholar 

Download references

Acknowledgements

This research is supported by NIH NIBIB NAC P41EB015902, NIH NICHD R01HD100009, and NIH NIBIB 5R01EB032708, and the Swiss National Science Foundation project P500PT-206955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingcheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y. et al. (2023). Consistency Regularization Improves Placenta Segmentation in Fetal EPI MRI Time Series. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2023. Lecture Notes in Computer Science, vol 14246. Springer, Cham. https://doi.org/10.1007/978-3-031-45544-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45544-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45543-8

  • Online ISBN: 978-3-031-45544-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics