Skip to main content

The Challenge of Fetal Cardiac MRI Reconstruction Using Deep Learning

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2023)

Abstract

Dynamic free-breathing fetal cardiac MRI is one of the most challenging modalities, which requires high temporal and spatial resolution to depict rapid changes in a small fetal heart. The ability of deep learning methods to recover undersampled data could help to optimise the kt-SENSE acquisition strategy and improve non-gated kt-SENSE reconstruction quality. However, their application is limited by the lack of available fetal cardiac data. In this work, we explore supervised deep learning networks for reconstruction of kt-SENSE style acquired data using an extensive in vivo dataset. Having access to fully-sampled low-resolution multi-coil fetal cardiac MRI, we study the performance of the networks to recover fully-sampled data from undersampled data. We consider model architectures together with training strategies taking into account their application in the real clinical setup used to collect the dataset to enable networks to recover prospectively undersampled data. We explore a set of modifications to form a baseline performance evaluation for dynamic fetal cardiac MRI on real data. We systematically evaluate the models on coil-combined data to reveal the effect of the suggested changes to the architecture in the context of fetal heart properties. We show that the best-performing models recover a detailed depiction of the maternal anatomy on a large scale, but the dynamic properties of the fetal heart are under-represented. Training directly on multi-coil data improves the performance of the models, allows their prospective application to undersampled data and makes them outperform CTFNet introduced for adult cardiac cine MRI. However, these models deliver similar qualitative performances recovering the maternal body very well but underestimating the dynamic properties of fetal heart. This dynamic feature of fast change of fetal heart that is highly localised suggests both more targeted training and evaluation methods might be needed for fetal heart application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, M., Çukur, T., Öksüz, İ.: Self-supervised dynamic MRI reconstruction. In: Machine Learning for Medical Image Reconstruction: 4th International Workshop, MLMIR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, 1 October 2021, Proceedings 4, pp. 35–44. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88552-6_4

  2. Carr, H.: Steady-state free precession in nuclear magnetic resonance. Phys. Rev. 112(5), 1693 (1958)

    Article  Google Scholar 

  3. Desai, A.D., et al.: Noise2Recon: a semi-supervised framework for joint MRI reconstruction and denoising. arXiv preprint arXiv:2110.00075 (2021)

  4. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  5. Haris, K., et al.: Self-gated fetal cardiac MRI with tiny golden angle iGRASP: a feasibility study. J. Magn. Reson. Imaging 46(1), 207–217 (2017)

    Article  MathSciNet  Google Scholar 

  6. Jung, H., Sung, K., Nayak, K.S., Kim, E.Y., Ye, J.C.: k-t FOCUSS a general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 61(1), 103–116 (2009)

    Article  Google Scholar 

  7. Kastryulin, S., Zakirov, D., Prokopenko, D.: PyTorch Image Quality: Metrics and measure for image quality assessment (2019). Open-source software available at https://github.com/photosynthesis-team/piq

  8. Kastryulin, S., Zakirov, J., Prokopenko, D., Dylov, D.V.: PyTorch image quality: metrics for image quality assessment. arXiv preprint arXiv:2208.14818 (2022)

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Kofler, A., Dewey, M., Schaeffter, T., Wald, C., Kolbitsch, C.: Spatio-temporal deep learning-based undersampling artefact reduction for 2D radial cine MRI with limited training data. IEEE Trans. Med. Imaging 39(3), 703–717 (2019)

    Article  Google Scholar 

  11. Kording, F., et al.: Dynamic fetal cardiovascular magnetic resonance imaging using doppler ultrasound gating. J. Cardiovasc. Magn. Reson. 20(1), 1–10 (2018)

    Article  Google Scholar 

  12. Lingala, S.G., Hu, Y., DiBella, E., Jacob, M.: Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans. Med. Imaging 30(5), 1042–1054 (2011)

    Article  Google Scholar 

  13. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  14. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  15. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  16. Qin, C., et al.: Complementary time-frequency domain networks for dynamic parallel MR image reconstruction. Magn. Reson. Med. 86(6), 3274–3291 (2021)

    Article  Google Scholar 

  17. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018)

    Article  Google Scholar 

  18. Qin, C., et al.: k-t NEXT: dynamic MR image reconstruction exploiting spatio-temporal correlations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 505–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_56

    Chapter  Google Scholar 

  19. Roberts, T.A., et al.: Fetal whole heart blood flow imaging using 4D cine MRI. Nat. Commun. 11(1), 1–13 (2020)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. In: International Conference on Information Processing in Medical Imaging, pp. 647–658. Springer, Cham (2017)

    Google Scholar 

  22. Tsao, J., Boesiger, P., Pruessmann, K.P.: k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 50(5), 1031–1042 (2003)

    Article  Google Scholar 

  23. Tsao, J., Kozerke, S., Boesiger, P., Pruessmann, K.P.: Optimizing spatiotemporal sampling for k-t BLAST and k-t SENSE: application to high-resolution real-time cardiac steady-state free precession. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 53(6), 1372–1382 (2005)

    Article  Google Scholar 

  24. Zou, J., et al.: SelfCoLearn: self-supervised collaborative learning for accelerating dynamic MR imaging. Bioengineering 9(11), 650 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the funding from EPSRC Centre for Doctoral Training in Smart Medical Imaging EP/S022104/1, support from Philips Medical Systems and core funding from the Wellcome/EPSRC Centre for Medical Engineering WT 203148/Z/16/Z and NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Prokopenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prokopenko, D., Hammernik, K., Roberts, T., Lloyd, D.F.A., Rueckert, D., Hajnal, J.V. (2023). The Challenge of Fetal Cardiac MRI Reconstruction Using Deep Learning. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2023. Lecture Notes in Computer Science, vol 14246. Springer, Cham. https://doi.org/10.1007/978-3-031-45544-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45544-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45543-8

  • Online ISBN: 978-3-031-45544-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics