Skip to main content

On the Local and Boundary Behavior of Mappings of Factor Spaces

  • Chapter
  • First Online:
Mappings with Direct and Inverse Poletsky Inequalities

Part of the book series: Developments in Mathematics ((DEVM,volume 78))

  • 82 Accesses

Abstract

In this chapter, we study mappings acting between domains of two factor spaces by certain groups of Möbius automorphisms of the unit ball that act discontinuously and do not have fixed points. Note that the study of quotient spaces is of the utmost importance, for example, for mappings of Riemannian surfaces. In particular, by the Poincaré uniformization theorem, each such surface is homeomorphic to its quotient space; Riemannian surfaces of hyperbolic type are homeomorphic to the quotient space with respect to some group of linear fractional mappings of the unit disk onto itself, acting discontinuously and having no fixed points. For mappings acting between domains of two factor spaces, we have established estimates for the distortion of the modulus of families of paths, which are similar to the well-known Poletsky and Väisälä inequalities. As applications, we have obtained several important results on the local and boundary behavior of mappings. The chapter also contains useful and rather complex examples of such mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apanasov, B.N.: Conformal Geometry of Discrete Groups and Manifolds. Walter de Gruyter, Berlin/New York (2000)

    Book  MATH  Google Scholar 

  2. Cristea, M.: Quasiregularity in metric spaces. Rev. Roumaine Math. Pures Appl. 51(3), 291–310 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Cristea, M.: Direct products of quasiregular mappings on metric spaces. Rev. Roumaine Math. Pures Appl. 53(4), 285–296 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Cristea, M.: Local homeomorphisms having local ACLn inverses. Complex Var. Elliptic Equations 53(1), 77–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cristea, M.: Open discrete mappings having local ACLn inverses. Complex Var. Elliptic Equations 55(1–3), 61–90 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Federer H.: Geometric Measure Theory. Springer, Berlin etc. (1969)

    MATH  Google Scholar 

  7. Guo, C.-Y.: Mappings of finite distortion between metric measure spaces. Conform. Geom. Dyn. 19, 95–121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo, C.-Y., Williams, M.: The branch set of a quasiregular mapping between metric manifolds. C. R. Math. Acad. Sci. Paris 354(2), 155–159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer Science+Business Media, New York (2001)

    Book  MATH  Google Scholar 

  10. Ignat’ev, A., Ryazanov, V.: Finite mean oscillation in the mapping theory. Ukr. Mat. Visn. 2(3), 395–417 (2005) (in Russian); translation in Ukr. Math. Bull. 2(3), 403–424 (2005)

    Google Scholar 

  11. Ilyutko, D.P., Sevost’yanov, E.A.: Boundary behaviour of open discrete mappings on Riemannian manifolds. Mat. Sb. 209(5), 3–53 (2018) (in Russian); translation in Sb. Math. 209(5), 605–651 (2018)

    Google Scholar 

  12. Kuratowski, K.: Topology, vol. 1. Academic Press, New York/London (1968)

    MATH  Google Scholar 

  13. Maly, J., Martio O.: Lusin’s condition N and mappings of the class \(W_{\mathrm {loc}}^{1,n}\). J. Reine Angew. Math. 458, 19–36 (1995)

    Google Scholar 

  14. Martio, O., Rickman, S., Väisälä, J.: Definitions for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I. Math. 448, 1–40 (1969)

    MathSciNet  MATH  Google Scholar 

  15. Martio, O., Ryazanov, V., Srebro, U., Yakubov, E.: Mappings with finite length distortion. J. d’Anal. Math. 93, 215–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martio, O., Ryazanov, V., Srebro, U., Yakubov, E.: Moduli in Modern Mapping Theory. Springer Science + Business Media, LLC, New York (2009)

    Google Scholar 

  17. Martio, O., Srebro, U.: Automorphic quasimeromorphic mappings in \(\mathbb {R}^n.\) Acta Math. 135, 221–247 (1975)

    Google Scholar 

  18. Martio, O., Srebro, U.: Periodic quasimeromorphic mappings. J. Analyse Math. 28, 20–40 (1975)

    Article  MATH  Google Scholar 

  19. Poleckii, E.A.: The modulus method for nonhomeomorphic quasiconformal mappings. Mat. Sb. 83(125), 2(10), 261–272 (1970) (in Russian); translation in Math. USSR-Sb. 12(2), 260–270 (1970)

    Google Scholar 

  20. Reimann, H.M., Rychener, T.: Funktionen Beschränkter Mittlerer Oscillation. Lecture Notes in Mathematics, vol. 487. Springer (1975)

    Google Scholar 

  21. Rickman, S.: Quasiregular Mappings. Springer, Berlin etc. (1993)

    Book  MATH  Google Scholar 

  22. Ryazanov, V., Volkov, S.: On the Boundary Behavior of Mappings in the Class \(W^{1,1}_{loc}\) on Riemann Surfaces. Complex Anal. Oper. Theory 11, 1503–1520 (2017)

    MATH  Google Scholar 

  23. Ryazanov, V., Volkov, S.: Prime ends in the Sobolev mapping theory on Riemann surfaces. Mat. Stud. 48, 24–36 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saks S.: Theory of the Integral. Dover Publications Inc., New York (1964)

    MATH  Google Scholar 

  25. Salimov, R.R., Sevost’yanov, E.A.: The Poletskii and Väisälä inequalities for the mappings with (p, q)-distortion. Complex Var. Elliptic Equations 59(2), 217–231 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sevost’yanov, E.A.: Local and boundary behavior of maps in metric spaces. Algebra i analiz 28(6), 118–146 (2016) (in Russian); translation in St. Petersburg Math. J. 28(6), 807–824 (2017)

    Google Scholar 

  27. Sevost’yanov, E.A., Markysh, A.A.: On Sokhotski–Casorati–Weierstrass theorem on metric spaces. Complex Var. Elliptic Equations 64(12), 1973–1993 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soultanis, E., Williams, M.: Marshall Distortion of quasiconformal maps in terms of the quasihyperbolic metric. J. Math. Anal. Appl. 402(2), 626–634 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Väisälä, J.: Two new characterizations for quasiconformality. Ann. Acad. Sci. Fenn. Ser. A 1 Math. 362, 1–12 (1965)

    Google Scholar 

  30. Väisälä, J.: Discrete open mappings on manifolds. Ann. Acad. Sci. Fenn. Ser. A 1 Math. 392, 1–10 (1966)

    Google Scholar 

  31. Väisälä, J.: Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics, vol. 229. Springer, Berlin etc., (1971)

    Google Scholar 

  32. Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics, vol. 1319. Springer, Berlin etc. (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sevost’yanov, E. (2023). On the Local and Boundary Behavior of Mappings of Factor Spaces. In: Mappings with Direct and Inverse Poletsky Inequalities. Developments in Mathematics, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-031-45418-9_18

Download citation

Publish with us

Policies and ethics