Skip to main content

Federated Learning and Mel-Spectrograms for Physical Violence Detection in Audio

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Domestic violence has increased globally as the COVID-19 pandemic combines with economic and social stresses. Some works have used traditional feature extractors to identify features from sound signals to detect physical violence. However, these extractors have not performed well at recognizing physical violence in audio. Besides, the use of Machine Learning is limited by the trade-off between collecting more data while keeping users privacy. Federated Learning (FL) is a technique that allows the creation of client-server networks, in which anonymized training result can be uploaded to a central model, responsible for aggregating and keeping the model up to date, and then distribute the updated model to the client nodes. In this paper, we proposed a FL approach to the violence detection problem in audio signals. The framework was evaluated on a newly proposed synthetic dataset, in which audio signals are represented as mel-spectrograms images, augmented with violence extracts. Thereby, it treats it as a problem of image classification using pre-trained Convolutional Neural Networks (CNN). Inception v3, MobileNet v2, ResNet152 v2 and VGG-16 architectures were evaluated, with the MobileNet architecture presenting the best performance, in terms of accuracy (71.9%), with a loss of 3.6% when compared to the non-FL setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://colab.research.google.com.

  2. 2.

    https://mlflow.org.

  3. 3.

    https://www.python.org.

  4. 4.

    https://www.tensorflow.org.

References

  1. Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., Lane, N.D.: Flower: a friendly federated learning research framework. arXiv preprint arXiv:2007.14390 (2020)

  2. Choi, K., Fazekas, G., Sandler, M.: Automatic tagging using deep convolutional neural networks (2016)

    Google Scholar 

  3. Durães, D., Marcondes, F.S., Gonçalves, F., Fonseca, J., Machado, J., Novais, P.: Detection violent behaviors: a survey. In: Novais, P., Vercelli, G., Larriba-Pey, J.L., Herrera, F., Chamoso, P. (eds.) ISAmI 2020. AISC, vol. 1239, pp. 106–116. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58356-9_11

    Chapter  Google Scholar 

  4. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937). https://doi.org/10.1080/01621459.1937.10503522. https://www.tandfonline.com/doi/abs/10.1080/01621459.1937.10503522

  5. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980). https://doi.org/10.1007/BF00344251

    Article  MATH  Google Scholar 

  6. Gu, B., Xu, A., Huo, Z., Deng, C., Huang, H.: Privacy-preserving asynchronous vertical federated learning algorithms for multiparty collaborative learning. IEEE Trans. Neural Netw. Learn. Syst. 33, 1–13 (2021). https://doi.org/10.1109/TNNLS.2021.3072238

    Article  MathSciNet  Google Scholar 

  7. Hard, A., et al.: Training keyword spotting models on non-iid data with federated learning (2020). https://arxiv.org/abs/2005.10406

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). http://arxiv.org/abs/1512.03385

  9. Hossain, M.S., Muhammad, G.: Emotion recognition using deep learning approach from audio–visual emotional big data. Inf. Fusion 49, 69–78 (2019). https://doi.org/10.1016/j.inffus.2018.09.008, https://www.sciencedirect.com/science/article/pii/S1566253517307066

  10. Hu, R., Guo, Y., Gong, Y.: Concentrated differentially private federated learning with performance analysis. IEEE Open J. Comput. Soc. 2, 276–289 (2021). https://doi.org/10.1109/OJCS.2021.3099108

    Article  Google Scholar 

  11. Volkmann, J., Stevens, S.S., Newman, E.B.: A scale for the measurement of the psychological magnitude pitch. J. Acoust. Soc. Am. 8, 208 (1937). https://doi.org/10.1121/1.1901999

    Article  Google Scholar 

  12. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516 (2020). https://doi.org/10.1007/s10462-020-09825-6. http://arxiv.org/abs/1901.06032

  13. Kong, Q., Cao, Y., Iqbal, T., Wang, Y., Wang, W., Plumbley, M.D.: PANNs: large-scale pretrained audio neural networks for audio pattern recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 2880–2894 (2020). https://doi.org/10.1109/TASLP.2020.3030497. https://ieeexplore.ieee.org/document/9229505/

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  15. Lacerda, T. B., Miranda, P., Camara, A., Furtado, A.P.C.: Deep learning and mel-spectrograms for physical violence detection in audio. In: The 18th National Meeting on Artificial and Computational Intelligence, pp. 268–279 (2021). https://sol.sbc.org.br/index.php/eniac/article/view/18259/18093

  16. Lee, J., Park, J., Kim, K.L., Nam, J.: Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms (2017)

    Google Scholar 

  17. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Differentially private asynchronous federated learning for mobile edge computing in urban informatics. IEEE Trans. Ind. Inf. 16(3), 2134–2143 (2020). https://doi.org/10.1109/TII.2019.2942179

    Article  Google Scholar 

  18. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR (2017). https://proceedings.mlr.press/v54/mcmahan17a.html

  19. Nations, U.: Policy brief: the impact of covid-19 on women (2020). https://www.un.org/sexualviolenceinconflict/wp-content/uploads/2020/06/report/policy-brief-the-impact-of-covid-19-on-women/policy-brief-the-impact-of-covid-19-on-women-en-1.pdf

  20. Nayyar, R.K., Nair, S., Patil, O., Pawar, R., Lolage, A.: Content-based auto-tagging of audios using deep learning. In: 2017 International Conference on Big Data, IoT and Data Science (BID), pp. 30–36 (2017). https://doi.org/10.1109/BID.2017.8336569

  21. Organization, W.H.: Violence against women (2021). https://www.who.int/news-room/fact-sheets/detail/violence-against-women

  22. Organization, W.H.: Violence against women prevalence estimates, 2018: global, regional and national prevalence estimates for intimate partner violence against women and global and regional prevalence estimates for non-partner sexual violence against women (2021). https://www.who.int/publications/i/item/9789240022256

  23. Paul, S., Sengupta, P., Mishra, S.: Flaps: Federated learning and privately scaling. In: 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 13–19 (2020). https://doi.org/10.1109/MASS50613.2020.00011

  24. Purwins, H., Li, B., Virtanen, T., Schluter, J., Chang, S.Y., Sainath, T.: Deep learning for audio signal processing. IEEE J. Sel. Topics Signal Process. 13(2), 206–219 (2019). https://doi.org/10.1109/jstsp.2019.2908700

    Article  Google Scholar 

  25. Ramzan, M., et al.: A review on state-of-the-art violence detection techniques. IEEE Access 7, 107560–107575 (2019). https://doi.org/10.1109/ACCESS.2019.2932114

    Article  Google Scholar 

  26. Rouas, J.L., Louradour, J., Ambellouis, S.: Audio events detection in public transport vehicle. In: 2006 IEEE Intelligent Transportation Systems Conference, pp. 733–738. IEEE (2006). https://doi.org/10.1109/ITSC.2006.1706829. http://ieeexplore.ieee.org/document/1706829/

  27. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520. IEEE (2018). https://doi.org/10.1109/CVPR.2018.00474. https://ieeexplore.ieee.org/document/8578572/

  28. Santos, F.: In-car violence detection based on the audio signal. In: Yin, H., et al. (eds.) IDEAL 2021. LNCS, vol. 13113, pp. 437–445. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91608-4_43

    Chapter  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015). https://arxiv.org/abs/1409.1556

  30. Souto, H., Mello, R., Furtado, A.: An acoustic scene classification approach involving domestic violence using machine learning. In: Anais do ENIAC, pp. 705–716 (2019). https://doi.org/10.5753/eniac.2019.9327. https://sol.sbc.org.br/index.php/eniac/article/view/9327

  31. Szegedy, C., et al.: Going deeper with convolutions (2014)

    Google Scholar 

  32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (2015). http://arxiv.org/abs/1512.00567

  33. Triastcyn, A., Faltings, B.: Federated learning with bayesian differential privacy. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 2587–2596 (2019). https://doi.org/10.1109/BigData47090.2019.9005465

  34. Tripathi, G., Singh, K.V.D.K.: Violence recognition using convolutional neural network: a survey. J. Intell. Fuzzy Syst. 39, 7931–7952 (2020). https://doi.org/10.3233/JIFS-201400. https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs201400

  35. Wilcoxon, F.: Individual comparisons by ranking methods. Biometr. Bull. 1(6), 80–83 (1945). http://www.jstor.org/stable/3001968

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor E. de S. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de S. Silva, V.E., Lacerda, T.B., Miranda, P., Câmara, A., Chagas, A.R.C., Furtado, A.P.C. (2023). Federated Learning and Mel-Spectrograms for Physical Violence Detection in Audio. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14197. Springer, Cham. https://doi.org/10.1007/978-3-031-45392-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45392-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45391-5

  • Online ISBN: 978-3-031-45392-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics