Skip to main content

Underwater Mussel Segmentation Using Smoothed Shape Descriptors with Random Forest

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2023)

Abstract

Segmentation of objects of interest is no longer a massive challenge with the adoption of machine learning and AI. However, feature selection and extraction are not trivial tasks in these approaches, and it is often necessary to introduce new methods for the creation of such features. Due to the lack of control over environmental conditions, for example turbidity and light scatter for underwater data, it is difficult to acquire color and texture features. However, it is still possible to obtain satisfactory shape features. This has led to the development of methods that can generate shape descriptors for use as features for data segmentation using machine learning methods such as random forest. In this work, we introduce a smoothed shape descriptor, which is the basis for a set of features used for the segmentation of underwater mussel structures with an accuracy of almost \(90\%\) based on manually labeled and measured mussel clusters by professional divers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/alicevision/Meshroom.

References

  1. Akhtar, A., Gao, W., Li, L., Li, Z., Jia, W., Liu, S.: Video-based point cloud compression artifact removal. IEEE Trans. Multimed. 24, 2866–2876 (2021)

    Article  Google Scholar 

  2. Ali, J., Khan, R., Ahmad, N., Maqsood, I.: Random forests and decision trees. Int. J. Comput. Sci. Issues (IJCSI) 9(5), 272 (2012)

    Google Scholar 

  3. Azhar, M., Hillman, J.R., Gee, T., Thrush, S., Delmas, P.: A low-cost stereo pipeline for semi-automated spatial mapping of mussel structures within mussel beds. Remote Sens. Environ. (Manuscript in review) (2023)

    Google Scholar 

  4. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)

    Google Scholar 

  5. Chang, A.X., et al.: Shapenet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  6. Chang, Y.L., Fang, C.Y., Ding, L.F., Chen, S.Y., Chen, L.G.: Depth map generation for 2D-to-3D conversion by short-term motion assisted color segmentation. In: 2007 IEEE International Conference on Multimedia and Expo, pp. 1958–1961. IEEE (2007)

    Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  8. Ferrari, R., et al.: 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Sci. Rep. 7(1), 1–9 (2017)

    Article  Google Scholar 

  9. Grilli, E., Poux, F., Remondino, F.: Unsupervised object-based clustering in support of supervised point-based 3D point cloud classification. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 43, 471–478 (2021)

    Article  Google Scholar 

  10. Li, H., Huang, D., Lemaire, P., Morvan, J.M., Chen, L.: Expression robust 3D face recognition via mesh-based histograms of multiple order surface differential quantities. In: 2011 18th IEEE International Conference on Image Processing, pp. 3053–3056 (2011). https://doi.org/10.1109/ICIP.2011.6116308

  11. Li, X., Guskov, I.: Multiscale features for approximate alignment of point-based surfaces. In: Symposium on Geometry Processing, vol. 255, pp. 217–226 (2005)

    Google Scholar 

  12. Lu, B., Wang, Q., Li, A.: Massive point cloud space management method based on octree-like encoding. Arab. J. Sci. Eng. 44, 9397–9411 (2019)

    Article  Google Scholar 

  13. Martin-Abadal, M., PiÃČÂśar-Molina, M., Martorell-Torres, A., Oliver-Codina, G., Gonzalez-Cid, Y.: Underwater pipe and valve 3D recognition using deep learning segmentation. J. Mar. Sci. Eng. 9(1), 5 (2020)

    Article  Google Scholar 

  14. Monaghan, J.J.: Smoothed particle hydrodynamics. ARAA 30, 543–574 (1992). https://doi.org/10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Pizarro, O., Eustice, R.M., Singh, H.: Large area 3-D reconstructions from underwater optical surveys. IEEE J. Oceanic Eng. 34(2), 150–169 (2009)

    Article  Google Scholar 

  17. Pulido, A., Qin, R., Diaz, A., Ortega, A., Ifju, P., Shin, J.J.: Time and cost-efficient bathymetric mapping system using sparse point cloud generation and automatic object detection. In: OCEANS 2022, Hampton Roads, pp. 1–8 (2022). https://doi.org/10.1109/OCEANS47191.2022.9977073

  18. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

  19. Runyan, H., et al.: Automated 2D, 2.5 D, and 3D segmentation of coral reef pointclouds and orthoprojections. Front. Rob. AI 9 (2022)

    Google Scholar 

  20. Schroff, F., Criminisi, A., Zisserman, A.: Object class segmentation using random forests. In: BMVC, pp. 1–10 (2008)

    Google Scholar 

  21. SÃühnlein, G., Rush, S., Thompson, L.: Using manned submersibles to create 3d sonar scans of shipwrecks. In: OCEANS 2011 MTS/IEEE KONA, pp. 1–10 (2011). https://doi.org/10.23919/OCEANS.2011.6107130

  22. Shu, C., Ding, X., Fang, C.: Histogram of the oriented gradient for face recognition. Tsinghua Sci. Technol. 16(2), 216–224 (2011). https://doi.org/10.1016/S1007-0214(11)70032-3

    Article  Google Scholar 

  23. Snover, M.L., Commito, J.A.: The fractal geometry of mytilus edulis l. spatial distribution in a soft-bottom system. J. Exp. Mar. Biol. Ecol. 223(1), 53–64 (1998)

    Google Scholar 

  24. Stein, F., Medioni, G.: Structural indexing: efficient 2d object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 14(12), 1198–1204 (1992)

    Article  Google Scholar 

  25. Surasak, T., Takahiro, I., Cheng, C.H., Wang, C.E., Sheng, P.Y.: Histogram of oriented gradients for human detection in video. In: 2018 5th International Conference on Business and Industrial Research (ICBIR), pp. 172–176 (2018). https://doi.org/10.1109/ICBIR.2018.8391187

  26. Tabia, H., Laga, H., Picard, D., Gosselin, P.H.: Covariance descriptors for 3D shape matching and retrieval. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4185–4192 (2014). https://doi.org/10.1109/CVPR.2014.533

  27. Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_45

    Chapter  Google Scholar 

  28. Valdez, D.A.S., et al.: CUDA implementation of a point cloud shape descriptor method for archaeological studies. In: Blanc-Talon, J., Delmas, P., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2020. LNCS, vol. 12002, pp. 457–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40605-9_39

    Chapter  Google Scholar 

  29. Wang, G., Tie, Y., Qi, L.: Action recognition using multi-scale histograms of oriented gradients based depth motion trail Images. In: Falco, C.M., Jiang, X. (eds.) Ninth International Conference on Digital Image Processing (ICDIP 2017), vol. 10420, p. 104200I. SPIE (2017). https://doi.org/10.1117/12.2281553

  30. Zhang, Y., et al.: Polarnet: an improved grid representation for online lidar point clouds semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9601–9610 (2020)

    Google Scholar 

  31. Zhou, W., Gao, S., Zhang, L., Lou, X.: Histogram of oriented gradients feature extraction from raw Bayer pattern images. IEEE Trans. Circ. Syst. II Express Briefs 67(5), 946–950 (2020). https://doi.org/10.1109/TCSII.2020.2980557

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Arturo Soriano Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valdez, D.A.S., Azhar, M., Strozzi, A.G., Hillman, J., Thrush, S., Delmas, P. (2023). Underwater Mussel Segmentation Using Smoothed Shape Descriptors with Random Forest. In: Blanc-Talon, J., Delmas, P., Philips, W., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2023. Lecture Notes in Computer Science, vol 14124. Springer, Cham. https://doi.org/10.1007/978-3-031-45382-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45382-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45381-6

  • Online ISBN: 978-3-031-45382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics