Skip to main content

Automatic Verification of High-Level Executable Models Running on FPGAs

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2023)

Abstract

The increasing complexity of Field-Programmable Gate Array (FPGA) applications necessitates high-level design and formal verification. Traditional approaches often fall short, prompting a shift towards Model-Driven Development (MDD) strategies utilising executable models. Executable models simplify the design process by directly translating high-level, human-readable models into executable code, eliminating manual transcoding errors. However, the challenge of verifying these models in an automated manner remains largely unsolved. The contribution of this paper is a model-driven software engineering methodology utilising logic-labelled finite-state machines (LLFSMs) that enable the automated generation of executable FPGA code from high-level, human-readable models as well as associated Kripke structures for the verification (through model-checking) of high-level executable models running on FPGA platforms. We present a method that utilises the semantics of logic-labelled finite state machines on an FPGA to significantly reduce the size of the created Kripke structures compared with existing LLFSM approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bucchiarone, A., Cabot, J., Paige, R.F., Pierantonio, A.: Grand challenges in model-driven engineering: an analysis of the state of the research. Softw. Syst. Model. 19(1), 5–13 (2020). https://doi.org/10.1007/s10270-019-00773-6

    Article  Google Scholar 

  2. Bucchiarone, A., et al.: What is the future of modeling? IEEE Softw. 38(02), 119–127 (2021)

    Article  Google Scholar 

  3. McColl, C., Estivill-Castro, V., McColl, M., Hexel, R.: Verifiable executable models for decomposable real-time systems. In: MODELSWARD, pp. 182–193 (2022)

    Google Scholar 

  4. Besnard, V., Brun, M., Jouault, F., Teodorov, C., Dhaussy, P.: Unified LTL verification and embedded execution of UML models. In: Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS 2018, pp. 112–122. Association for Computing Machinery, New York (2018)

    Google Scholar 

  5. Guermazi, S., Tatibouet, J., Cuccuru, A., Seidewitz, E., Dhouib, S., Gérard, S.: Executable modeling with fUML and Alf in Papyrus: tooling and experiments. In: Mayerhofer, T., Langer, P., Seidewitz, E., Gray, J. (eds.) Proceedings of the 1st International Workshop on Executable Modeling Co-Located with ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS 2015), Volume 1560 of CEUR Workshop Proceedings, pp. 3–8. CEUR-WS.org (2015)

    Google Scholar 

  6. Pham, V.C., Radermacher, A., Gérard, S., Li, S.: Complete code generation from UML state machine. In: Ferreira Pires, L., Hammoudi, S., Selic, B. (eds.) Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development, MODELSWARD 2017, Porto, Portugal, 19–21 February 2017, pp. 208–219. SciTePress (2017)

    Google Scholar 

  7. Iqbal, M., Ali, S., Yue, T., Briand, L.: Applying UML/MARTE on industrial projects: challenges, experiences, and guidelines. Softw. Syst. Model. 14(4), 1367–1385 (2015). https://doi.org/10.1007/s10270-014-0405-5

    Article  Google Scholar 

  8. Petre, M.: UML in practice. In: 2013 35th International Conference on Software Engineering (ICSE), pp. 722–731 (2013)

    Google Scholar 

  9. Beeck, M.: A comparison of Statecharts variants. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 128–148. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58468-4_163

    Chapter  Google Scholar 

  10. Mäkinen, S., Münch, J.: Effects of test-driven development: a comparative analysis of empirical studies. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2014. LNBIP, vol. 166, pp. 155–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03602-1_10

    Chapter  Google Scholar 

  11. Hilton, M., Tunnell, T., Huang, K., Marinov, D., Dig, D.: Usage, costs, and benefits of continuous integration in open-source projects. In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016, pp. 426–437. Association for Computing Machinery, New York (2016)

    Google Scholar 

  12. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems. ACM Trans. Program. Lang. Syst. 6, 254–280 (1984)

    Article  Google Scholar 

  13. Furrer, F.J.: Future-Proof Software-Systems: A Sustainable Evolution Strategy. Springer, Berlin (2019). https://doi.org/10.1007/978-3-658-19938-8

    Book  Google Scholar 

  14. Estivill-Castro, V., Hexel, R.: Module isolation for efficient model checking and its application to FMEA in model-driven engineering. In: Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering, pp. 218–225 (2013)

    Google Scholar 

  15. Estivill-Castro, V., Hexel, R., McColl, M.: High-level executable models of reactive real-time systems with logic-labelled finite-state machines and FPGAs. In: 2018 International Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–8 (2018)

    Google Scholar 

  16. Wood, S.K., Akehurst, D.H., Uzenkov, O., Howells, W.G.J., McDonald-Maier, K.D.: A model-driven development approach to mapping UML state diagrams to synthesizable VHDL. IEEE Trans. Comput. 57(10), 1357–1371 (2008)

    Article  MathSciNet  Google Scholar 

  17. McUmber, W.E., Cheng, B.H.C.: UML-based analysis of embedded systems using a mapping to VHDL. In: Proceedings of the 4th IEEE International Symposium on High-Assurance Systems Engineering, pp. 56–63 (1999)

    Google Scholar 

  18. Labiak, G., Borowik, G.: Statechart-based controllers synthesis in FPGA structures with embedded array blocks. Int. J. Electron. Telecommun. 56(1), 13–24 (2010)

    Article  Google Scholar 

  19. Estivill-Castro, V., Hexel, R.: Arrangements of finite-state machines - semantics, simulation, and model checking. In: Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development, MODELSWARD, vol. 1, pp. 182–189. INSTICC, SciTePress (2013)

    Google Scholar 

  20. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. Wiley, Hoboken (1994)

    MATH  Google Scholar 

  21. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_22

    Chapter  Google Scholar 

  22. Vivado Design Suite User Guide: Synthesis (UG901)

    Google Scholar 

  23. Lamport, L.: Time, clocks, and the ordering of events in a distributed system, pp. 179–196. Association for Computing Machinery, New York (2019)

    Google Scholar 

  24. Kopetz, H.: Sparse time versus dense time in distributed real-time systems. In: 1992 Proceedings of the 12th International Conference on Distributed Computing Systems, pp. 460–467 (1992)

    Google Scholar 

  25. McColl, M.: FurnaceRelay LLFSM, version 1.0.0 (2023). https://github.com/Morgan2010/FurnaceRelay

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan McColl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McColl, M., McColl, C., Hexel, R. (2023). Automatic Verification of High-Level Executable Models Running on FPGAs. In: André, É., Sun, J. (eds) Automated Technology for Verification and Analysis. ATVA 2023. Lecture Notes in Computer Science, vol 14216. Springer, Cham. https://doi.org/10.1007/978-3-031-45332-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45332-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45331-1

  • Online ISBN: 978-3-031-45332-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics