Skip to main content

Some Physical Characteristics of Tellurite Glasses and Tellurite Glass Ceramics

  • Chapter
  • First Online:
The Physics of Advanced Optical Materials: Tellurite Glasses
  • 101 Accesses

Abstract

Due to its greater optical nonlinearity and superior optical quality, scientists have recently increased their focus on glassy materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Kader, A., et al. 1994. Thermoluminescence dosimetry of rare-earth doped tellurite phosphate glasses. Materials Chemistry and Physics 36 (3–4): 365–370.

    Article  Google Scholar 

  2. Elkholy, M. 2003. Thermoluminescence for rare-earths doped tellurite glasses. Materials Chemistry and Physics 77 (2): 321–330.

    Article  Google Scholar 

  3. El-Mallawany, R., and H. Diab. 2012. Improving dosimetric properties of tellurite glasses. Physica B: Condensed Matter 407 (17): 3580–3585.

    Article  ADS  Google Scholar 

  4. El-Mallawany, R., et al. 2004. Study of luminescence properties of Er3+-ions in new tellurite glasses. Optical Materials 26 (3): 267–270.

    Article  ADS  Google Scholar 

  5. Shen, S., M. Naftaly, and A. Jha. 2002. Tungsten–tellurite—a host glass for broadband EDFA. Optics Communications 205 (1–3): 101–105.

    Article  ADS  Google Scholar 

  6. Himei, Y., et al. 1994. Coordination change of Te atoms in binary tellurite glasses. Journal of Non-Crystalline Solids 177: 164–169.

    Article  ADS  Google Scholar 

  7. Hussain, N.S., et al. 2009. Absorption and emission analysis of RE3+ (Sm3+ and Dy3+): Lithium boro tellurite glasses. Journal of Nanoscience and Nanotechnology 9 (6): 3672–3677.

    Article  Google Scholar 

  8. Hager, I., R. El-Mallawany, and A. Bulou. 2011. Luminescence spectra and optical properties of TeO2–WO3–Li2O glasses doped with Nd, Sm and Er rare earth ions. Physica B: Condensed Matter 406 (4): 972–980.

    Article  ADS  Google Scholar 

  9. Gökçe, M., and D. Koçyiğit. 2019. Spectroscopic investigations of Dy3+ doped borogermanate glasses for laser and wLED applications. Optical Materials 89: 568–575.

    Article  ADS  Google Scholar 

  10. Ji, C., et al. 2021. Sm3+/Pr3+ biactivated Ca3Y2Ge3O12: 0.04 Sm3+: Pr3+ red phosphor with high thermal stability for low correlated temperature WLED. Journal of Luminescence 232: 117775.

    Article  ADS  Google Scholar 

  11. Chen, Q., et al. 2021. Color-tunable Eu3+-or Sm3+-doped perovskite phosphors as optical temperature-sensing materials. Optical Materials 111: 110585.

    Article  Google Scholar 

  12. Pandey, N., et al. 2019. Efficient fluorescence quenching of 5-aminoquinoline: Silver ion recognition study. Journal of Luminescence 205: 475–481.

    Article  ADS  Google Scholar 

  13. Gonçalves, A., et al. 2018. Luminescence and upconversion processes in Er3+-doped tellurite glasses. Journal of Luminescence 201: 110–114.

    Article  ADS  Google Scholar 

  14. Chen, W., et al. 2018. Sr2GdF7: Tm3+/Yb3+ glass ceramic: A highly sensitive optical thermometer based on FIR technique. Journal of Alloys and Compounds 735: 2544–2550.

    Article  Google Scholar 

  15. Selvaraju, K., and K. Marimuthu. 2013. Structural and spectroscopic studies on concentration dependent Sm3+ doped boro-tellurite glasses. Journal of Alloys and Compounds 553: 273–281.

    Article  Google Scholar 

  16. El-Mallawany, R. 1992. The optical properties of tellurite glasses. Journal of Applied Physics 72 (5): 1774–1777.

    Article  ADS  Google Scholar 

  17. Sayyed, M., and R. El-Mallawany. 2017. Shielding properties of (100–x) TeO2–(x) MoO3 glasses. Materials Chemistry and Physics 201: 50–56.

    Article  Google Scholar 

  18. Elazoumi, S., et al. 2018. Effect of PbO on optical properties of tellurite glass. Results in Physics 8: 16–25.

    Article  ADS  Google Scholar 

  19. El-Mallawany, R., et al. 1994. Elastic constants of semiconducting tellurite glasses. Materials Chemistry and Physics 37 (3): 295–298.

    Article  Google Scholar 

  20. Walas, M., et al. 2018. Tailored white light emission in Eu3+/Dy3+ doped tellurite glass phosphors containing Al3+ ions. Optical Materials 79: 289–295.

    Article  ADS  Google Scholar 

  21. Uma, V., et al. 2018. Luminescence and energy transfer studies on Sm3+/Tb3+ codoped telluroborate glasses for WLED applications. Journal of Molecular Structure 1151: 266–276.

    Article  ADS  Google Scholar 

  22. Denker, B., et al. 2018. Rare-earth ions doped zinc-tellurite glass for 2 ÷ 3 µm lasers. Applied Physics B 124: 1–8.

    Article  Google Scholar 

  23. Yuan, J., and P. Xiao. 2018. Compositional effects of Na2O, GeO2, and Bi2O3 on 1.8 µm spectroscopic properties of Tm3+ doped zinc tellurite glasses. Journal of Luminescence 196: 281–284.

    Article  ADS  Google Scholar 

  24. Bednarkiewicz, A., et al. 2020. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 12 (27): 14405–14421.

    Article  Google Scholar 

  25. Jaque, D., and F. Vetrone. 2012. Luminescence nanothermometry. Nanoscale 4 (15): 4301–4326.

    Article  ADS  Google Scholar 

  26. Yang, P., et al. 2019. Realizing emission color tuning, ratiometric optical thermometry and temperature-induced redshift investigation in novel Eu3+-doped Ba3La (VO4)3 phosphors. Dalton Transactions 48 (29): 10824–10833.

    Article  Google Scholar 

  27. Ximendes, E.C., et al. 2017. In vivo subcutaneous thermal video recording by supersensitive infrared nanothermometers. Advanced Functional Materials 27 (38): 1702249.

    Article  Google Scholar 

  28. Gharouel, S., et al. 2018. Fluorescence intensity ratio and lifetime thermometry of praseodymium phosphates for temperature sensing. Journal of Luminescence 201: 372–383.

    Article  ADS  Google Scholar 

  29. Serkova, N.J. 2017. Nanoparticle-based magnetic resonance imaging on tumor-associated macrophages and inflammation. Frontiers in Immunology 8: 590.

    Article  Google Scholar 

  30. Liu, H., et al. 2015. Intracellular temperature sensing: An ultra-bright luminescent nanothermometer with non-sensitivity to pH and ionic strength. Scientific Reports 5 (1): 14879.

    Article  ADS  Google Scholar 

  31. Gao, M., et al. 2017. Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/magnetic resonance imaging-guided photodynamic therapy. Biomaterials 133: 165–175.

    Article  Google Scholar 

  32. Kramer, N.J., K.S. Schramke, and U.R. Kortshagen. 2015. Plasmonic properties of silicon nanocrystals doped with boron and phosphorus. Nano Letters 15 (8): 5597–5603.

    Article  ADS  Google Scholar 

  33. Stark, A.M., and S. Way. 1974. The use of thermovision in the detection of early breast cancer. Cancer 33 (6): 1664–1670.

    Article  Google Scholar 

  34. Ortgies, D.H., et al. 2019. Infrared fluorescence imaging of infarcted hearts with Ag2S nanodots. Nano Research 12: 749–757.

    Article  Google Scholar 

  35. Santos, H.D., et al. 2018. In vivo early tumor detection and diagnosis by infrared luminescence transient nanothermometry. Advanced Functional Materials 28 (43): 1803924.

    Article  Google Scholar 

  36. Ximendes, E.C., et al. 2017. In vivo ischemia detection by luminescent nanothermometers. Advanced Healthcare Materials 6 (4): 1601195.

    Article  Google Scholar 

  37. Du, P., Y. Hua, and J.S. Yu. 2018. Energy transfer from VO43—group to Sm3+ ions in Ba3 (VO4)2: 3xSm3+ microparticles: A bifunctional platform for simultaneous optical thermometer and safety sign. Chemical Engineering Journal 352: 352–359.

    Article  Google Scholar 

  38. Sales, T., et al. 2022. White light source and optical thermometry based on zinc-tellurite glass tri-doped with Tm3+/Er3+/Sm3+. Journal of Alloys and Compounds 899: 163305.

    Article  Google Scholar 

  39. Greenwood, G. 1956. The growth of dispersed precipitates in solutions. Acta Metallurgica 4 (3): 243–248.

    Article  Google Scholar 

  40. Toy, R., et al. 2011. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22 (11): 115101.

    Article  ADS  Google Scholar 

  41. Nanda, K., et al. 2015. Study of vibrational spectroscopy, linear and non-linear optical properties of Sm3+ ions doped BaO–ZnO–B2O3 glasses. Solid State Sciences 45: 15–22.

    Article  ADS  Google Scholar 

  42. Azlan, M., et al. 2018. Linear and nonlinear optical efficiency of novel neodymium nanoparticles doped tellurite glass for advanced laser glass. Educational JSMT 5 (2): 47–66.

    Google Scholar 

  43. Slimane, A.B., et al. 2013. On the phenomenon of large photoluminescence red shift in GaN nanoparticles. Nanoscale Research Letters 8 (1): 1–6.

    Article  MathSciNet  Google Scholar 

  44. Som, T., and B. Karmakar. 2009. Green and red fluorescence upconversion in neodymium-doped low phonon antimony glasses. Journal of Alloys and Compounds 476 (1–2): 383–389.

    Article  Google Scholar 

  45. Wei, T., et al. 2015. Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass. Journal of Alloys and Compounds 618: 95–101.

    Article  Google Scholar 

  46. Dutchaneephet, J., A. Limpichaipanit, and A. Ngamjarurojana. 2019. Optical spectroscopic investigations of neodymium and erbium added bismuth silicate glasses. Optik 178: 111–116.

    Article  ADS  Google Scholar 

  47. Azam, M., and V.K. Rai. 2018. Enhanced frequency upconversion in Er3+–Yb3+ codoped heavy metal oxides based tellurite glasses. Methods and Applications in Fluorescence 6 (2): 025002.

    Article  Google Scholar 

  48. Azam, M., and V.K. Rai. 2017. Ho3+–Yb3+ codoped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion. Solid State Sciences 66: 7–15.

    Article  ADS  Google Scholar 

  49. Azam, M., V.K. Rai, and P. Mishra. 2016. Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses. Journal of Materials Science: Materials in Electronics 27: 12633–12641.

    Google Scholar 

  50. Azam, M., V.K. Rai, and D.K. Mohanty. 2017. Spectroscopy and enhanced frequency upconversion in Nd3+–Yb3+ codoped TPO glasses: Energy transfer and NIR to visible upconverter. Methods and Applications in Fluorescence 5 (3): 035005.

    Article  ADS  Google Scholar 

  51. El-Mallawany, R. 1993. Longitudinal elastic constants of tellurite glasses. Journal of Applied Physics 73 (10): 4878–4880.

    Article  ADS  Google Scholar 

  52. El-Mallawany, R., and G. Saunders. 1987. Elastic behaviour under pressure of the binary tellurite glasses TeO2–ZnCl2 and TeO2–WO3. Journal of Materials Science Letters 6 (4): 443–446.

    Article  Google Scholar 

  53. Hussain, N.S., G. Hungerford, R. El-Mallawany, M.J.M. Gomes, M.A. Lopes, N. Ali, J.D. Santos, and S. Buddhudu. 2009. Absorption an demission analysis of RE3+(Sm3+ and Dy3+): Lithium boro tellurite glasses. Journal of the Nanoscience and Nanotechnology 9: 3672–3677.

    Article  Google Scholar 

  54. El-Mallawany, R. 2000. Specific heat capacity of semiconducting glasses: Binary vanadium tellurite. Physica Status Solidi A 177 (2): 439–444.

    Article  ADS  Google Scholar 

  55. El-Mallawany, R., L. Sharaf El-Deen, and M. Elkholy. 1996. Dielectric properties and polarizability of molybdenum tellurite glasses. Journal of Materials Science 31: 6339-6343.

    Google Scholar 

  56. Hager, I., R. El-Mallawany, and M. Poulain. 1999. Infrared and Raman spectra of new molybdenum and tungsten oxyfluoride glasses. Journal of Materials Science 34 (21): 5163–5168.

    Article  ADS  Google Scholar 

  57. Peng, S., et al. 2015. Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser. Optical Fiber Technology 22: 95–101.

    Article  ADS  Google Scholar 

  58. Mahraz, Z.A.S., et al. 2013. Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass. Journal of Luminescence 144: 139–145.

    Article  ADS  Google Scholar 

  59. Heinz, M., et al. 2018. Formation of bimetallic gold-silver nanoparticles in glass by UV laser irradiation. Journal of Alloys and Compounds 767: 1253–1263.

    Article  Google Scholar 

  60. Azlan, M., et al. 2019. Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass. Optics Communications 448: 82–88.

    Article  ADS  Google Scholar 

  61. Cheng, P., et al. 2017. Enhanced broadband near-infrared luminescence from Pr3+-doped tellurite glass with silver nanoparticles. Optical Materials 73: 102–110.

    Article  ADS  Google Scholar 

  62. Zuo, T., et al. 2010. The big red shift of photoluminescence of Mn dopants in strained CdS: A case study of Mn-doped MnS–CdS heteronanostructures. Journal of the American Chemical Society 132 (19): 6618–6619.

    Article  Google Scholar 

  63. Ren, P., et al. 2014. Green photoluminescence from erbium-doped molybdenum trioxide. Materials Letters 122: 320–322.

    Article  Google Scholar 

  64. Mahraz, Z.A.S., M. Sahar, and S. Ghoshal. 2015. Enhanced luminescence from silver nanoparticles integrated Er3+-doped boro-tellurite glasses: Impact of annealing temperature. Journal of Alloys and Compounds 649: 1102–1109.

    Article  Google Scholar 

  65. Raju, K.V., et al. 2013. Judd-Ofelt analysis and photoluminescence properties of RE3+ (RE= Er and Nd): Cadmium lithium boro tellurite glasses. Solid State Sciences 15: 102–109.

    Article  ADS  Google Scholar 

  66. Hamza, A.M., et al. 2019. Physical properties, ligand field and Judd-Ofelt intensity parameters of bio-silicate borotellurite glass system doped with erbium oxide. Journal of Luminescence 207: 497–506.

    Article  ADS  Google Scholar 

  67. Elkhoshkhany, N., et al. 2018. Influence of Sm2O3 addition on Judd-Ofelt parameters, thermal and optical properties of the TeO2–Li2O–ZnO–Nb2O5 glass system. Materials Characterization 144: 274–286.

    Article  Google Scholar 

  68. Slimane, A., et al. 2013. On the phenomenon of large photoluminescence red shift in GaN nanoparticles. Nano Scale Research Letters 8: 342.

    Article  ADS  Google Scholar 

  69. Azlina, Y., et al. 2020. Optical performance of neodymium nanoparticles doped tellurite glasses. Physica B: Condensed Matter 577: 411784.

    Article  Google Scholar 

  70. Duffy, J.A. 1989. Optical basicity of titanium(IV) oxide and zirconium(IV) oxide. Journal of the American Ceramic Society 72 (10): 2012–2013.

    Article  Google Scholar 

  71. Sidek, H., et al. 2004. Formation and elastic behavior of lead-magnesium chlorophosphate glasses. Turkish Journal of Physics 28 (1): 65–72.

    ADS  Google Scholar 

  72. Dimitrov, V., and T. Komatsu. 2005. Classification of oxide glasses: A polarizability approach. Journal of Solid State Chemistry 178 (3): 831–846.

    Article  ADS  Google Scholar 

  73. Sun, J., et al. 2011. Glass formation and properties of Ge–Te–BiI3 far infrared transmitting chalcohalide glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 79 (5): 904–908.

    Article  ADS  Google Scholar 

  74. Dimitrov, V., and S. Sakka. 1996. Linear and nonlinear optical properties of simple oxides. II. Journal of Applied Physics 79 (3): 1741–1745.

    Article  ADS  Google Scholar 

  75. Hamza, A.M., et al. 2022. Borotellurite bio-silica glasses doped by erbium nanoparticles: Structural and thermal properties. Journal of Theoretical and Applied Physics 16 (2): 1–7.

    Google Scholar 

  76. Bouzidi, M., et al. 2022. Downconversion mechanism in Er3+/Yb3+ codoped fluorotellurite glasses to enhance the efficiency of c-Si PV cells. Journal of Non-Crystalline Solids 595: 121837.

    Article  Google Scholar 

  77. Sailaja, P., et al. 2022. Near-infrared photoluminescence studies of neodymium ions doped SrO–Al2O3–BaCl2–B2O3–TeO2 glasses for laser and fiber amplifier applications. Optics and Laser Technology 156: 108569.

    Article  Google Scholar 

  78. Morova, Y., et al. 2022. Tunable continuous-wave laser operation of Tm3+ ion doped tellurite glass near 2 μm. Journal of Luminescence 252: 119318.

    Article  ADS  Google Scholar 

  79. Wang, P., et al. 2022. Effects of melting temperature on color-changing in germano-tellurite niobate glass. Optics and Laser Technology 156: 108627.

    Article  Google Scholar 

  80. Tang, D., et al. 2023. 2–3 μm mid-infrared luminescence of Ho3+/Yb3+ co-doped chloride-modified fluorotellurite glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 285: 121833.

    Article  Google Scholar 

  81. Li, C., et al. 2023. Broadband NIR radiative transitions in Er3+/Tm3+ co-doping tellurite glass material, Broadband NIR radiative transitions in Er3+/Tm3+ co-doping tellurite glass material. Materials Research Bulletin 158: 112042.

    Article  Google Scholar 

  82. Patra, P., and K. Annapurna. 2022. Transparent tellurite glass-ceramics for photonics applications: A comprehensive review on crystalline phases and crystallization mechanisms. Progress in Materials Science 125: 100890.

    Article  Google Scholar 

  83. Dolhen, M., et al. 2018. Nd3+-doped transparent tellurite ceramics bulk lasers. Scientific Reports 8 (1): 4640.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Mallawany, R. (2023). Some Physical Characteristics of Tellurite Glasses and Tellurite Glass Ceramics. In: The Physics of Advanced Optical Materials: Tellurite Glasses. Springer, Cham. https://doi.org/10.1007/978-3-031-45245-1_4

Download citation

Publish with us

Policies and ethics