Skip to main content

BM-SMIL: A Breast Cancer Molecular Subtype Prediction Framework from H&E Slides with Self-supervised Pretraining and Multi-instance Learning

  • Conference paper
  • First Online:
Computational Mathematics Modeling in Cancer Analysis (CMMCA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14243))

  • 259 Accesses

Abstract

Breast cancer is the most commonly diagnosed cancer, and accurate molecular subtype prediction plays a crucial role in determining treatment strategies. While immunohistochemistry (IHC) is commonly used for molecular subtype diagnosis, it suffers from cost and labor limitations. The prediction of molecular subtypes using hematoxylin and eosin (H&E) stained slides has gained importance. However, the task is challenged by limited samples, weak annotations, and strong tumor heterogeneity. This paper proposes a scalable framework, BM-SMIL, for molecular subtype prediction of breast cancer based on self-supervised pretraining and multi-instance learning. Firstly, a self-supervised pretraining framework utilizing multi-scale knowledge distillation is introduced to obtain a representative patch encoder. Then, an attention-based instance selection strategy is employed to filter out noise instances. Finally, a Transformer integrated with subtype contrastive loss is proposed for effective aggregation and WSI-level prediction. Experimental results on the dataset from cooperative hospital demonstrate the effectiveness of our proposed framework. The BM-SMIL framework has the potential to enhance molecular subtype prediction performance and can be extended to other pathology image classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pusztai, L., Mazouni, C., Anderson, K., et al.: Molecular classification of breast cancer: limitations and potential. Oncologist 11(8), 868–877 (2006)

    Article  Google Scholar 

  2. Sengal, A.T., Haj-Mukhtar, N.S., Elhaj, A.M., et al.: Immunohistochemistry defined subtypes of breast cancer in 678 Sudanese and Eritrean women; hospitals based case series. BMC Cancer 17(1), 1–9 (2017)

    Article  Google Scholar 

  3. Rawat, R.R., Ortega, I., Roy, P., et al.: Deep learned tissue “fingerprints” classify breast cancers by ER/PR/Her2 status from H&E images. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  4. Jaber, M.I., Song, B., Taylor, C., et al.: A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival. Breast Cancer Res. 22(1), 1–10 (2020)

    Article  Google Scholar 

  5. Liu, H., Xu, W.D., Shang, Z.H., et al.: Breast cancer molecular subtype prediction on pathological images with discriminative patch selection and multi-instance learning. Front. Oncol. 12, 858453 (2022)

    Article  Google Scholar 

  6. Han, B., Yao, Q., Yu, X., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  7. Breunig, M.M., Kriegel, H.P., Ng, R.T., et al.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  8. He, K., Fan, H., Wu, Y., et al.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  9. Chen, T., Kornblith, S., Norouzi, M., et al.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, vol. 119, pp. 1597–1607. JMLR.org, (2020)

    Google Scholar 

  10. Caron, M., Touvron, H., Misra, I., et al.: Emerging properties in self-supervised vision transformers. In: ICCV 2021 - International Conference on Computer Vision, p. 1 (2021)

    Google Scholar 

  11. Grill, J.B., Strub, F., Altché, F., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21271–21284 (2020)

    Google Scholar 

  12. He, K., Chen, X., Xie, S., et al.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  13. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  14. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14313–14323 (2021)

    Google Scholar 

  15. Li, J., Lin, T., Xu, Y.: SSLP: spatial guided self-supervised learning on pathological images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 3–12. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_1

    Chapter  Google Scholar 

  16. Wang, X., Yang, S., Zhang, J., et al.: Transformer-based unsupervised contrastive learning for histopathological image classification. Med. Image Anal. 81, 102559 (2022)

    Article  Google Scholar 

  17. Lerousseau, M., et al.: Weakly supervised multiple instance learning histopathological tumor segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 470–479. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_45

    Chapter  Google Scholar 

  18. Campanella, G., Hanna, M., Geneslaw, L., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1 (2019)

    Article  Google Scholar 

  19. Tomita, N., Abdollahi, B., Wei, J., et al.: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides. JAMA Netw. OpenNetw. Open 2(11), e1914645 (2019)

    Article  Google Scholar 

  20. Hashimoto, N., Fukushima, D., Koga, R., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3852–3861 (2020)

    Google Scholar 

  21. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: Dy, J., Krause, A.: Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  22. Shao, Z., Bian, H., Chen, Y., et al.: TransMIL: transformer based correlated multiple instance learning for whole slide image classification. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  23. Lu, M.Y., Williamson, D.F., Chen, T.Y., et al.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  24. Yu, S., et al.: Mil-vt: Multiple instance learning enhanced vision transformer for fundus image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 45–54. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_5

    Chapter  Google Scholar 

  25. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 815–823 (2015)

    Google Scholar 

  26. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern.Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  27. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2022)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (62276250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shang, Z., Liu, H., Wang, K., Wang, X. (2023). BM-SMIL: A Breast Cancer Molecular Subtype Prediction Framework from H&E Slides with Self-supervised Pretraining and Multi-instance Learning. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F., Li, C. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2023. Lecture Notes in Computer Science, vol 14243. Springer, Cham. https://doi.org/10.1007/978-3-031-45087-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45087-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45086-0

  • Online ISBN: 978-3-031-45087-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics