Skip to main content

Pretraining is All You Need: A Multi-Atlas Enhanced Transformer Framework for Autism Spectrum Disorder Classification

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2023)

Abstract

Autism spectrum disorder (ASD) is a prevalent psychiatric condition characterized by atypical cognitive, emotional, and social patterns. Timely and accurate diagnosis is crucial for effective interventions and improved outcomes in individuals with ASD. In this study, we propose a novel Multi-Atlas Enhanced Transformer framework, METAFormer, ASD classification. Our framework utilizes resting-state functional magnetic resonance imaging data from the ABIDE I dataset, comprising 406 ASD and 476 typical control (TC) subjects. METAFormer employs a multi-atlas approach, where flattened connectivity matrices from the AAL, CC200, and DOS160 atlases serve as input to the transformer encoder. Notably, we demonstrate that self-supervised pretraining, involving the reconstruction of masked values from the input, significantly enhances classification performance without the need for additional or separate training data. Through stratified cross-validation, we evaluate the proposed framework and show that it surpasses state-of-the-art performance on the ABIDE I dataset, with an average accuracy of 83.7% and an AUC-score of 0.832. The code for our framework is available at github.com/Lugges991/METAFormer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahammed, M.S., Niu, S., Ahmed, M.R., Dong, J., Gao, X., Chen, Y.: DarkASDNet: classification of ASD on functional MRI using deep neural network. Front. Neuroinf. 15, 635657 (2021)

    Article  Google Scholar 

  2. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)

    Article  Google Scholar 

  3. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)

    Google Scholar 

  4. Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34(4), 537–541 (1995)

    Article  Google Scholar 

  5. Brihadiswaran, G., Haputhanthri, D., Gunathilaka, S., Meedeniya, D., Jayarathna, S.: EEG-based processing and classification methodologies for autism spectrum disorder: a review. J. Comput. Sci. 15(8), 1161–1183 (2019)

    Article  Google Scholar 

  6. Craddock, C., et al.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Front. Neuroinform. 7, 27 (2013)

    Google Scholar 

  7. Craddock, R.C., James, G., Holtzheimer, P.E., III., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)

    Article  Google Scholar 

  8. Deng, J., Hasan, M.R., Mahmud, M., Hasan, M.M., Ahmed, K.A., Hossain, M.Z.: Diagnosing autism spectrum disorder using ensemble 3D-CNN: a preliminary study. In: 2022 IEEE International Conference on Image Processing (ICIP), October 2022. IEEE (2022)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2019)

    Google Scholar 

  10. Dosenbach, N.U.F., et al.: Prediction of individual brain maturity using fMRI. Science 329(5997), 1358–1361 (2010)

    Article  Google Scholar 

  11. Du, Y., Fu, Z., Calhoun, V.D.: Classification and prediction of brain disorders using functional connectivity: promising but challenging. Front. Neurosci. 12, 1–29 (2018)

    Article  Google Scholar 

  12. Epalle, T.M., Song, Y., Liu, Z., Lu, H.: Multi-atlas classification of autism spectrum disorder with hinge loss trained deep architectures: abide i results. Appl. Soft Comput. 107, 107375 (2021)

    Article  Google Scholar 

  13. Gerloff, C., Konrad, K., Kruppa, J., Schulte-Rüther, M., Reindl, V.: Autism spectrum disorder classification based on interpersonal neural synchrony: can classification be improved by dyadic neural biomarkers using unsupervised graph representation learning? In: Abdulkadir, A., et al. (eds.) Machine Learning in Clinical Neuroimaging, MLCN 2022. LNCS, vol. 13596, pp. 147–157. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17899-3_15

  14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification (2015)

    Google Scholar 

  15. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs) (2023)

    Google Scholar 

  16. Iidaka, T.: Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex 63, 55–67 (2015)

    Article  Google Scholar 

  17. Jiang, W., et al.: CNNG: a convolutional neural networks with gated recurrent units for autism spectrum disorder classification. Front. Aging Neurosci. 14, 948704 (2022)

    Article  Google Scholar 

  18. Kang, L., Gong, Z., Huang, J., Xu, J.: Autism spectrum disorder recognition based on machine learning with ROI time-series. NeuroImage Clin. (2023)

    Google Scholar 

  19. Lamani, M.R., Benadit, P.J., Vaithinathan, K.: Multi-atlas graph convolutional networks and convolutional recurrent neural networks-based ensemble learning for classification of autism spectrum disorders. SN Comput. Sci. 4(3), 213 (2023)

    Article  Google Scholar 

  20. Li, X., Dvornek, N.C., Zhuang, J., Ventola, P., Duncan, J.S.: Brain biomarker interpretation in ASD using deep learning and fMRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 206–214. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_24

    Chapter  Google Scholar 

  21. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2019)

    Google Scholar 

  22. Martino, A.D., Yan, C.G., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2013)

    Article  Google Scholar 

  23. Qayyum, A., et al.: An efficient 1DCNN-LSTM deep learning model for assessment and classification of fMRI-based autism spectrum disorder. In: Raj, J.S., Kamel, K., Lafata, P. (eds.) Innovative Data Communication Technologies and Application, vol. 96, pp. 1039–1048. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7167-8_77

  24. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  25. Rolls, E.T., Huang, C.C., Lin, C.P., Feng, J., Joliot, M.: Automated anatomical labelling atlas 3. Neuroimage 206, 116189 (2020)

    Article  Google Scholar 

  26. Thomas, R.M., Gallo, S., Cerliani, L., Zhutovsky, P., El-Gazzar, A., van Wingen, G.: Classifying autism spectrum disorder using the temporal statistics of resting-state functional MRI data with 3D convolutional neural networks. Front. Psychiatry 11, 1–12 (2020)

    Article  Google Scholar 

  27. Timimi, S., Milton, D., Bovell, V., Kapp, S., Russell, G.: Deconstructing diagnosis: four commentaries on a diagnostic tool to assess individuals for autism spectrum disorders. Autonomy (Birmingham, England) 1(6), AR26 (2019)

    Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  29. Wang, Y., Liu, J., Xiang, Y., Wang, J., Chen, Q., Chong, J.: MAGE: automatic diagnosis of autism spectrum disorders using multi-atlas graph convolutional networks and ensemble learning. Neurocomputing 469, 346–353 (2022)

    Article  Google Scholar 

  30. Wang, Y., Wang, J., Wu, F.X., Hayrat, R., Liu, J.: AIMAFE: autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning. J. Neurosci. Meth. 343, 108840 (2020)

    Article  Google Scholar 

  31. Yan, C., Zang, Y.: DPARSF: a MATLAB toolbox for “pipeline’’ data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 1–17 (2010)

    Google Scholar 

  32. Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A transformer-based framework for multivariate time series representation learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August 2021. ACM (2021)

    Google Scholar 

  33. Zhao, Y., Ge, F., Zhang, S., Liu, T.: 3D deep convolutional neural network revealed the value of brain network overlap in differentiating autism spectrum disorder from healthy controls. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 172–180. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_20

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank the International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction (IMPRS-MMFD) for supporting Samuel Heczko. Florian Birk is supported by the Deutsche Forschungsgesellschaft (DFG) Grant DFG HE 9297/1-1. Julius Steiglechner is funded by Alzheimer Forschung Initiative e.V.Grant #18052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Mahler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahler, L. et al. (2023). Pretraining is All You Need: A Multi-Atlas Enhanced Transformer Framework for Autism Spectrum Disorder Classification. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2023. Lecture Notes in Computer Science, vol 14312. Springer, Cham. https://doi.org/10.1007/978-3-031-44858-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44858-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44857-7

  • Online ISBN: 978-3-031-44858-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics