Skip to main content

Hydraulic Quadruped Robot JINPOONG II: Toward Qualified Platform for Mobile Manipulation in Field Environment

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 18 (IAS 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 795))

Included in the following conference series:

  • 40 Accesses

Abstract

We introduce a hydraulic quadruped robot, JINPOONG II, designed to qualify as a base platform for mobile manipulation. The mobile manipulation process in the field environment can be classified into three stages: “Approach,” “Stretch-out,” and “Manipulation.” To qualify as suitable the mobile platform must have “mobility,” “dexterity” to perform each stage, and “stability” to ensure stable operation of every process of stages. The quadruped robot is the most suitable candidate for mobile manipulator application because it can satisfy these requirements. We adopted a SLIP-based leg mechanism and a suitable control strategy to configure a quadruped robot that meets the qualifications. We then tested JINPOONG II’s performance of body motion and interaction with external forces to verify whether the subject robot has the required qualifications in line with the design intent. The results established that JINPOONG II could perform 6 DoF motions of the body and various other compliance motions and walking on rough terrain. This indicates that JINPOONG II is equipped with qualifications as a base platform for mobile manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruiken, D., Lanighan, M.W., Grupen, R.A.: Postural modes and control for dexterous mobile manipulation: the umass ubot concept. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots, pp. 280–285 (2013)

    Google Scholar 

  2. Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., Bergh, C., Borders, J., Frost, M., Hagman, M.: Mobile manipulation and mobility as manipulation-design and algorithms of RoboSimian. J. Field Robot. 32(2), 1013–1015 (2015)

    Article  Google Scholar 

  3. Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: An actuator with physically variable stiffness for highly dynamic legged locomotion. In: Proceedings of IEEE International Conference on Robotics and Automation, Vol. 5, pp. 4662–4667 (2004)

    Google Scholar 

  4. Boaventura, T., Buchli, J., Semini, C., Caldwell, D.G.: Model-based hydraulic impedance control for dynamic robots. IEEE Trans. Robot. 31(6), 1324–1336 (2015)

    Article  Google Scholar 

  5. Bledt, G., Powell, M. J., Katz, B., Di Carlo, J., Wensing, P. M., Kim, S.: MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot. In: 2018 IEEE IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2245–2252 (2018)

    Google Scholar 

  6. Abe, Y., Stephens, B., Murphy, M.P., Rizzi, A.A.: Dynamic whole-body robotic manipulation. Unmanned Syst. Technol. XV 8741, 280–290 (2013)

    Google Scholar 

  7. Rehman, B.U., Focchi, M., Lee, J., Dallali, H., Caldwell, D.G., Semini, C.: Towards a multi-legged mobile manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3618–3624 (2016)

    Google Scholar 

  8. BostonDynamics: Spot’s Got an Arm! https://www.youtube.com/watch?v=Ve9kWX_KXus Online; Accessed 19 Feb 2023

  9. Ferrolho, H., Merkt, W., Ivan, V., Wolfslag, W., Vijayakumar, S.: Optimizing dynamic trajectories for robustness to disturbances using polytopic projections. In: 2020 IEEE International Conference on Intelligent Robots and Systems, pp. 7477–7484 (2020)

    Google Scholar 

  10. Merritt, H.E.: Hydraulic Control Systems. Wiley (1967)

    Google Scholar 

  11. Na, J., Li, Y., Huang, Y., Gao, G., Chen, Q.: Output feedback control of uncertain hydraulic servo systems. IEEE Trans. Ind. Electron. 67(1), 490–500 (2019)

    Article  Google Scholar 

  12. Kim, D., Lee, S., Shin, H., Lee, G., Park, J., Ahn, K., Ryew, S.M.: Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. J. Appl. Physiol. 85(3), 1044–1055 (1998)

    Article  Google Scholar 

  13. Hyon, S.H., Suewaka, D., Torii, Y., Oku, N., Ishida, H.: Development of a fast torque-controlled hydraulic humanoid robot that can balance compliantly. In: 2015 IEEE International Conference on Intelligent Robots and Systems, pp. 576–581 (2015)

    Google Scholar 

  14. Semini, C., Tsagarakis, N.G., Guglielmino, E., Caldwell, D.G.: Design and experimental evaluation of the hydraulically actuated prototype leg of the HyQ robot. In: 2010 IEEE International Conference on Intelligent Robots and Systems, pp. 3640–3645 (2010)

    Google Scholar 

  15. Kaminaga, H., Otsuki, S., Nakamura, Y.: Development of high-power and backdrivable linear electro-hydrostatic actuator. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 973–978 (2014)

    Google Scholar 

  16. Seo, J., Cho, J., Park, B. Y., Kim, J., Park, S.: Leg mechanism design for SLIP model of hydraulic quadruped robot. 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence, 461–466 (2014)

    Google Scholar 

  17. Aagaard, P., Simonsen, E.B., Trolle, M., Bangsbo, J., Klausen, K.: Isokinetic hamstring/quadriceps strength ratio: influence from joint angular velocity, gravity correction and contraction mode. Acta Physiologica Scandinavica 154(4), 421–427 (1995)

    Article  Google Scholar 

  18. Aagaard, P., Simonsen, E.B., Magnusson, S.P., Larsson, B., Dyhre-Poulsen, P.: A new concept for isokinetic hamstring: quadriceps muscle strength ratio. Am. J. Sports Med. 26(2), 231–237 (1998)

    Article  Google Scholar 

  19. BostonDynamics: Spot Autonomous Navigation. https://www.youtube.com/watch?v=Ve9kWX_KXus Online. Accessed 19 Feb 2023

  20. HuboLab KAIST: [DRC 2015] Team KAIST Full Video. https://www.youtube.com/watch?v=PomkJ4l9CMU Online. Accessed 19 Feb 2023

  21. Seo, J., Kim, J., Park, S., Cho, J.: A SLIP-based robot leg for decoupled spring-like behavior: design and evaluation. Int. J. Control Autom. Syst. 17(9), 2388–2399 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This study has been conducted with the support of the Korea Institute of Industrial Technology as “Development of Soft Robotics Technology for Human-Robot Coexistence Care Robots (KITECH EH230015)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehong Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seo, J., Park, S., Kim, J.T., Kim, J., Cho, J. (2024). Hydraulic Quadruped Robot JINPOONG II: Toward Qualified Platform for Mobile Manipulation in Field Environment. In: Lee, SG., An, J., Chong, N.Y., Strand, M., Kim, J.H. (eds) Intelligent Autonomous Systems 18. IAS 2023. Lecture Notes in Networks and Systems, vol 795. Springer, Cham. https://doi.org/10.1007/978-3-031-44851-5_31

Download citation

Publish with us

Policies and ethics