Skip to main content

Physics-Aware Motion Simulation For T2*-Weighted Brain MRI

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2023)

Abstract

In this work, we propose a realistic, physics-aware motion simulation procedure for T\(_2\)*-weighted magnetic resonance imaging (MRI) to improve learning-based motion correction. As T\(_2\)*-weighted MRI is highly sensitive to motion-related changes in magnetic field inhomogeneities, it is of utmost importance to include physics information in the simulation. Additionally, current motion simulations often only assume simplified motion patterns. Our simulations, on the other hand, include real recorded subject motion and realistic effects of motion-induced magnetic field inhomogeneity changes. We demonstrate the use of such simulated data by training a convolutional neural network to detect the presence of motion in affected k-space lines. The network accurately detects motion-affected k-space lines for simulated displacements down to \(\ge \)0.5 mm (accuracy on test set: \(92.5\%\)). Finally, our results demonstrate exciting opportunities of simulation-based k-space line detection combined with more powerful reconstruction methods. Our code is publicly available at: https://github.com/HannahEichhorn/T2starLineDet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Retrospective correction of motion in MR images. In: van der Kouwe, A.J., Andre, J.B. (eds.) Motion Correction in MR, vol. 6, pp. 259–267. Academic Press (2022)

    Google Scholar 

  2. Brackenier, Y., et al.: Data-driven motion-corrected brain MRI incorporating pose-dependent B0 fields. Magn. Reson. Med. 88(2), 817–831 (2022)

    Article  Google Scholar 

  3. Chatterjee, S., Sciarra, A., Dünnwald, M., Oeltze-Jafra, S., Nürnberger, A., Speck, O.: Retrospective motion correction of MR images using prior-assisted deep learning. In: Proceedings of the 34th Conference on NeurIPS (2020)

    Google Scholar 

  4. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  5. Eichhorn, H., Hammernik, K., Epp, S.M., Karampinos, D.C., Schnabel, J.A., Preibisch, C.: Investigating the impact of motion and associated B0 changes on oxygenation sensitive MRI through realistic simulations. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 31 (2023)

    Google Scholar 

  6. Gersing, A.S., et al.: Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke. Neuroradiology 57, 1253–1261 (2015)

    Article  Google Scholar 

  7. Hammernik, K., Knoll, F.: Machine learning for image reconstruction. In: Zhou, S.K., Rueckert, D., Fichtinger, G. (eds.) Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 25–64. Academic Press (2020)

    Google Scholar 

  8. Haskell, M.W., et al.: Network accelerated motion estimation and reduction (NAMER): convolutional neural network guided retrospective motion correction using a separable motion model. Magn. Reson. Med. 82(4), 1452–1461 (2019)

    Article  Google Scholar 

  9. Hirsch, N.M., Toth, V., Förschler, A., Kooijman, H., Zimmer, C., Preibisch, C.: Technical considerations on the validity of blood oxygenation level-dependent-based MR assessment of vascular deoxygenation: Bold-based assessment of vascular deoxygenation. NMR Biomed. 27(7), 853–862 (2014)

    Article  Google Scholar 

  10. Jiang, W., et al.: Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator. Magn. Reson. Med. 79(6), 2954–2967 (2018)

    Article  Google Scholar 

  11. Johnson, P.M., Drangova, M.: Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Magn. Reson. Med. 82(3), 901–910 (2019)

    Article  Google Scholar 

  12. Kaczmarz, S., et al.: Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI. J. Cerebral Blood Flow Metaboli. 41(2), 380–396 (2021)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd ICLR (2015)

    Google Scholar 

  14. Küstner, T., Armanious, K., Yang, J., Yang, B., Schick, F., Gatidis, S.: Retrospective correction of motion-affected MR images using deep learning frameworks. Magn. Reson. Med. 82(4), 1527–1540 (2019)

    Article  Google Scholar 

  15. Liu, J., de Zwart, J.A., van Gelderen, P., Murphy-Boesch, J., Duyn, J.H.: Effect of head motion on MRI B0 field distribution. Magn. Reson. Med. 80(6), 2538–2548 (2018)

    Article  Google Scholar 

  16. Magerkurth, J., et al.: Quantitative T2* -mapping based on multi-slice multiple gradient echo flash imaging: retrospective correction for subject motion effects: Movement correction in T2* mapping. Magn. Reson. Med. 66(4), 989–997 (2011)

    Article  Google Scholar 

  17. Nöth, U., Volz, S., Hattingen, E., Deichmann, R.: An improved method for retrospective motion correction in quantitative T2* mapping. Neuroimage 92, 106–119 (2014)

    Article  Google Scholar 

  18. Oksuz, I., et al.: Deep learning-based detection and correction of cardiac MR motion artefacts during reconstruction for high-quality segmentation. IEEE Trans. Med. Imaging 39(12), 4001–4010 (2020)

    Article  Google Scholar 

  19. Preibisch, C., et al.: Characterizing hypoxia in human glioma: a simultaneous multimodal MRI and PET study. NMR Biomed. 30(11), e3775 (2017)

    Article  Google Scholar 

  20. Rotman, M., Brada, R., Beniaminy, I., Ahn, S., Hardy, C.J., Wolf, L.: Correcting motion artifacts in MRI scans using a deep neural network with automatic motion timing detection. In: Medical Imaging 2021: Physics of Medical Imaging, vol. 11595, pp. 296–305. SPIE (2021)

    Google Scholar 

  21. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018)

    Article  Google Scholar 

  22. Spieker, V., et al.: Deep learning for retrospective motion correction in MRI: a comprehensive review, arXiv: 2305.06739

  23. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Xu, X., et al.: Learning-based motion artifact removal networks for quantitative R2\(\ast \) mapping. Mag. Res. Med. 88(1), 106–119 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

V.S. and H.E. are partially supported by the Helmholtz Association under the joint research school “Munich School for Data Science - MUDS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Eichhorn .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 154 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eichhorn, H. et al. (2023). Physics-Aware Motion Simulation For T2*-Weighted Brain MRI. In: Wolterink, J.M., Svoboda, D., Zhao, C., Fernandez, V. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2023. Lecture Notes in Computer Science, vol 14288. Springer, Cham. https://doi.org/10.1007/978-3-031-44689-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44689-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44688-7

  • Online ISBN: 978-3-031-44689-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics