Skip to main content

Accuracy Assessment of UAS Photogrammetry with GCP and PPK-Assisted Georeferencing

  • Conference paper
  • First Online:
New Developments and Environmental Applications of Drones (FinDrones 2023)

Included in the following conference series:

  • 68 Accesses

Abstract

Establishing a dense, well-distributed ground control point (GCP) network for unmanned aerial system (UAS) surveys can be time-consuming and impractical. Recent availability of UASs capable of GNSS-assisted aerial triangulation (AAT) has provided an alternative method, wherein the refinement of the positional accuracy of camera stations via, for example, post-processing kinematic (PPK) correction reduces the need for GCPs. Studies have highlighted how AAT can provide nearly equal accuracy to GCP-based georeferencing, especially if at least one GCP is utilized for bias correction. However, results on the utility of more than one GCP together with AAT are scarce or mixed. This study explores how the number of GCPs affects model accuracy when mapping a ~1 km2 site with a UAS capable of PPK correction. Also, a comparison between two different local base stations and a virtual reference station (VRS) is provided. Based on analysis with 3D checkpoints, increasing the number of GCPs provided only negligible improvements in horizontal accuracy. However, significant improvement is seen in vertical accuracy when increasing the number of GCPs, with the VRS providing the most accurate results. The results indicate that UAS surveys with AAT may benefit from utilization of multiple GCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colomina, I., Molina, P.: Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 92, 79–97 (2014). https://doi.org/10.1016/j.isprsjprs.2014.02.013

    Article  Google Scholar 

  2. Nex, F., Remondino, F.: UAV for 3D mapping applications: a review. Appl. Geomatics. 6, 1–15 (2014). https://doi.org/10.1007/s12518-013-0120-x

    Article  Google Scholar 

  3. Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abellán, A.: Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surf. Dyn. 4, 359–389 (2016). https://doi.org/10.5194/esurf-4-359-2016

    Article  Google Scholar 

  4. Tsouros, D.C., Bibi, S., Sarigiannidis, P.G.: A review on UAV-based applications for precision agriculture. Information (Switzerland). 10, 349 (2019). https://doi.org/10.3390/info10110349

  5. Rahman, M.F.F., Fan, S., Zhang, Y., Chen, L.: A comparative study on application of unmanned aerial vehicle systems in agriculture. Agriculture (Switzerland). 11, 22 (2021). https://doi.org/10.3390/agriculture11010022

    Article  Google Scholar 

  6. Torresan, C., Berton, A., Carotenuto, F., Di, S.F., Gioli, B., Matese, A., Miglietta, F., Zaldei, A., Wallace, L., Torresan, C., Berton, A., Carotenuto, F., Di, S.F., Gioli, B., Matese, A., Miglietta, F., Vagnoli, C., Torresan, C., Berton, A., Carotenuto, F.: Forestry applications of UAVs in Europe: a review. Int. J. Remote Sens. 38, 2427–2447 (2016). https://doi.org/10.1080/01431161.2016.1252477

    Article  Google Scholar 

  7. Pádua, L., Vanko, J., Hruška, J., Adão, T., Sousa, J.J., Peres, E., Morais, R.: UAS, sensors, and data processing in agroforestry: a review towards practical applications. Int. J. Remote Sens. 38, 2349–2391 (2017). https://doi.org/10.1080/01431161.2017.1297548

    Article  Google Scholar 

  8. Park, S., Choi, Y.: Applications of unmanned aerial vehicles in mining from exploration to reclamation: a review. Fortschr. Mineral. 10, 1–32 (2020). https://doi.org/10.3390/min10080663

    Article  Google Scholar 

  9. Shahmoradi, J., Talebi, E., Roghanchi, P., Hassanalian, M.: A comprehensive review of applications of drone technology in the mining industry. Drones. 4, 34 (2020). https://doi.org/10.3390/drones4030034

    Article  Google Scholar 

  10. Nooralishahi, P., Ibarra-Castanedo, C., Deane, S., López, F., Pant, S., Genest, M., Avdelidis, N.P., Maldague, X.P.V.: Drone-based non-destructive inspection of industrial sites: a review and case studies. Drones. 5, 106 (2021). https://doi.org/10.3390/drones5040106

    Article  Google Scholar 

  11. Tmušić, G., Manfreda, S., Aasen, H., James, M.R., Gonçalves, G., Ben-Dor, E., Brook, A., Polinova, M., Arranz, J.J., Mészáros, J., Zhuang, R., Johansen, K., Malbeteau, Y., de Lima, I.P., Davids, C., Herban, S., McCabe, M.F.: Current practices in UAS-based environmental monitoring. Remote Sens. 12, 1001 (2020). https://doi.org/10.3390/rs12061001

  12. Themistocleous, K.: The use of UAVs for cultural heritage and archaeology. In: Remote Sensing for Archaeology and Cultural Landscapes Springer Remote Sensing/Photogrammetry, pp. 241–269. Springer, Cham (2020)

    Chapter  Google Scholar 

  13. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M.: “Structure-from-motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology. 179, 300–314 (2012). https://doi.org/10.1016/j.geomorph.2012.08.021

    Article  Google Scholar 

  14. James, M.R., Robson, S.: Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J. Geophys. Res. Earth Surf. 117, 1–17 (2012). https://doi.org/10.1029/2011JF002289

    Article  Google Scholar 

  15. Carrivick, J.L., Smith, M.W., Quincey, D.J.: Structure from Motion in the Geosciences. John Wiley & Sons, Ltd, West Sussex (2016)

    Book  Google Scholar 

  16. Mosbrucker, A.R., Major, J.J., Spicer, K.R., Pitlick, J.: Camera system considerations for geomorphic applications of SfM photogrammetry. Earth Surf. Process. Landf. 42, 969–986 (2017). https://doi.org/10.1002/esp.4066

    Article  Google Scholar 

  17. O’Connor, J., Smith, M.J., James, M.R.: Cameras and settings for aerial surveys in the geosciences: Optimising image data. Prog. Phys. Geogr. 41, 325–344 (2017). https://doi.org/10.1177/0309133317703092

    Article  Google Scholar 

  18. Duffy, J.P., Cunliffe, A.M., DeBell, L., Sandbrook, C., Wich, S.A., Shutler, J.D., Myers-Smith, I.H., Varela, M.R., Anderson, K.: Location, location, location: considerations when using lightweight drones in challenging environments. Remote Sens. Ecol. Conserv. 4, 7–19 (2018). https://doi.org/10.1002/rse2.58

    Article  Google Scholar 

  19. Benassi, F., Dall’Asta, E., Diotri, F., Forlani, G., di Cella, U.M., Roncella, R., Santise, M.: Testing accuracy and repeatability of UAV blocks oriented with gnss-supported aerial triangulation. Remote Sens. 9, 172 (2017). https://doi.org/10.3390/rs9020172

    Article  Google Scholar 

  20. James, M.R., Robson, S., d’Oleire-Oltmanns, S., Niethammer, U.: Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment. Geomorphology. 280, 51–66 (2017). https://doi.org/10.1016/j.geomorph.2016.11.021

    Article  Google Scholar 

  21. Clapuyt, F., Vanacker, V., Van Oost, K.: Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology. 260, 4–15 (2016). https://doi.org/10.1016/j.geomorph.2015.05.011

    Article  Google Scholar 

  22. Tonkin, T.N., Midgley, N.G.: Ground-control networks for image based surface reconstruction: an investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sens. 8, 16–19 (2016). https://doi.org/10.3390/rs8090786

    Article  Google Scholar 

  23. Agüera-vega, F., Carvajal-ramírez, F., Martínez-Carricondo, P.: Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. 98, 221–227 (2017). https://doi.org/10.1016/j.measurement.2016.12.002

  24. Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F.J., García-Ferrer, A., Pérez-Porras, F.J.: Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinf. 72, 1–10 (2018). https://doi.org/10.1016/j.jag.2018.05.015

    Article  Google Scholar 

  25. Sanz-Ablanedo, E., Chandler, J.H., Rodríguez-Pérez, J.R., Ordóñez, C.: Accuracy of Unmanned Aerial Vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sens. 10, 1606 (2018). https://doi.org/10.3390/rs10101606

  26. Forlani, G., Dall’Asta, E., Diotri, F., di Cella, U.M., Roncella, R., Santise, M.: Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Remote Sens. 10, 311 (2018). https://doi.org/10.3390/rs10020311

    Article  Google Scholar 

  27. Zhang, H., Aldana-Jague, E., Clapuyt, F., Wilken, F., Vanacker, V., Van Oost, K.: Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detection. Earth Surf. Dyn. 7, 807–827 (2019). https://doi.org/10.5194/esurf-7-807-2019

    Article  Google Scholar 

  28. Benjamin, A.R., O’Brien, D., Barnes, G., Wilkinson, B.E., Volkmann, W.: Improving data acquisition efficiency: systematic accuracy evaluation of GNSS-assisted aerial triangulation in UAS operations. J. Surv. Eng. 146, 1–15 (2020). https://doi.org/10.1061/(asce)su.1943-5428.0000298

    Article  Google Scholar 

  29. McMahon, C., Mora, O.E., Starek, M.J.: Evaluating the performance of suas photogrammetry with PPK positioning for infrastructure mapping. Drones. 5, 50 (2021). https://doi.org/10.3390/drones5020050

    Article  Google Scholar 

  30. Žabota, B., Kobal, M.: Accuracy assessment of uav-photogrammetric-derived products using ppk and gcps in challenging terrains: in search of optimized rockfall mapping. Remote Sens. 13, 3812 (2021). https://doi.org/10.3390/rs13193812

    Article  Google Scholar 

  31. Tomaštík, J., Mokroš, M., Surový, P., Grznárová, A., Merganič, J.: UAV RTK/PPK method-an optimal solution for mapping inaccessible forested areas? Remote Sens. 11, 721 (2019). https://doi.org/10.3390/RS11060721

  32. Gerke, M., Przybilla, H.J.: Accuracy analysis of photogrammetric UAV image blocks: influence of onboard RTK-GNSS and cross flight patterns. Photogrammetrie, Fernerkundung, Geoinformation. 2016, 17–30 (2016). https://doi.org/10.1127/pfg/2016/0284

    Article  Google Scholar 

  33. Stott, E., Williams, R.D., Hoey, T.B.: Ground control point distribution for accurate kilometre-scale topographic mapping using an rtk-gnss unmanned aerial vehicle and sfm photogrammetry. Drones. 4, 1–21 (2020). https://doi.org/10.3390/drones4030055

    Article  Google Scholar 

  34. ASPRS: ASPRS positional accuracy standards for digital geospatial data. Photogramm. Eng. Remote Sens. 81, 1–26 (2015). https://doi.org/10.14358/PERS.81.3.A1-A26

    Article  Google Scholar 

  35. Mesa-Mingorance, J.L., Ariza-López, F.J.: Accuracy assessment of digital elevation models (DEMs): a critical review of practices of the past three decades. Remote Sens. 12, 2630 (2020). https://doi.org/10.3390/RS12162630

    Article  Google Scholar 

  36. Levene, H.: Robust tests for equality of variances. Contributions to probability and statistics: essays in honor of Harold hotelling. 69 (1960)

    Google Scholar 

  37. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47 (1952). https://doi.org/10.1080/01621459.1952.10483441

  38. Dunn, O.J.: Multiple comparisons using rank sums. Technometrics. 6 (1964). https://doi.org/10.1080/00401706.1964.10490181

  39. Morsdorf, F., Meier, E., Kötz, B., Itten, K.I., Dobbertin, M., Allgöwer, B.: LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens. Environ. 92, 353–362 (2004). https://doi.org/10.1016/j.rse.2004.05.013

    Article  Google Scholar 

  40. Rauhala, A., Meriö, L.-J., Kuzmin, A., Korpelainen, P., Ala-Aho, P., Kumpula, T., Kløve, B., Marttila, H.: Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs - part 1: measurements, processing, and accuracy assessment. The Cryosphere. 17, 4343–4362 (2023). https://doi.org/10.5194/tc-17-4343-2023

  41. Gikas, V.: Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation. Sensors (Switzerland). 12, 11249–11270 (2012). https://doi.org/10.3390/s120811249

    Article  Google Scholar 

  42. Štroner, M., Urban, R., Seidl, J., Reindl, T., Brouček, J.: Photogrammetry using UAV-mounted GNSS RTK: georeferencing strategies without GCPs. Remote Sens. 13, 1336 (2021). https://doi.org/10.3390/rs13071336

Download references

Acknowledgments

The measurements were carried out during a continued monitoring campaign that was part of the project Drone-based monitoring of mine environments, which was supported by the European Regional Development Fund. The author was also personally supported by the K. H. Renlund Foundation. I gratefully acknowledge the fieldwork assistance of colleagues from the Geological Survey of Finland and thank the National Land Survey of Finland for the access to the FinnRef RINEX data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anssi Rauhala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rauhala, A. (2024). Accuracy Assessment of UAS Photogrammetry with GCP and PPK-Assisted Georeferencing. In: Westerlund, T., Peña Queralta, J. (eds) New Developments and Environmental Applications of Drones. FinDrones 2023. Springer, Cham. https://doi.org/10.1007/978-3-031-44607-8_4

Download citation

Publish with us

Policies and ethics