Skip to main content

Assertional Logics and the Frege Hierarchy

  • Chapter
  • First Online:
Janusz Czelakowski on Logical Consequence

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 27))

  • 30 Accesses

Abstract

In this paper we continue the investigation carried out in Albuquerque et al. (2018) on assertional logics and their relation with the Frege hierarchy, through the notions of relative point-regularity and relative congruence orderability. We provide new characterizations for the classes of logics within the Frege hierarchy under the underlying assumption of assertionality. In particular, an assertional logic \({\mathcal {S}}\) is fully Fregean if and only if the class \({\textsf{Alg}}{\mathcal {S}}\) is congruence orderable. Moreover, an assertional logic \({\mathcal {S}}\) is protoalgebraic if and only the class \({\textsf{Alg}}{\mathcal {S}}\) is point-regular. Finally, we introduce a new notion of relative strong congruence orderability and prove that the class \({\textsf{Alg}}{\mathcal {S}}\) satisfies this property if and only if the intrinsic variety \(\mathbb {V}({\mathcal {S}})\) is congruence orderable. As a consequence, we prove a sufficient condition for the variety problem in AAL.

Second reader: Daniele Mundici

Hugo Albuquerque is Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As defined in Raftery (2006, Definition 8) and further investigated in Albuquerque et al. (2018).

  2. 2.

    According to Idziak and Wroński (2009, p. 596), the notion was first considered in the context of universal algebra by Büchi and Owens (1990) under the name fission free.

  3. 3.

    We denote the operators of takin isomorphic copies, homomorphic images and subdirect products by the usual symbols \(\mathbb {I}\), \(\mathbb {H}\) and \(\mathbb {P}_\textrm{S}\), respectively.

  4. 4.

    This definition does not need the assumption of \({\textsf{K}}\) being closed under \(\mathbb{I}\mathbb{P}_\textrm{S}\), only pointedness.

  5. 5.

    Basically, a more general notion than that of Definition 9.2: Whenever we have

    $$\begin{aligned} \Gamma \vdash _{\mathcal {S}}\varphi \Leftrightarrow \boldsymbol{\tau }^{\boldsymbol{Fm}}(\Gamma ) \models _{\textsf{K}}\boldsymbol{\tau }^{\boldsymbol{Fm}}(\varphi ) , \end{aligned}$$

    for some set of equations \(\boldsymbol{\tau }(x) \subseteq \textrm{Eq}\) and some class of algebras \({\textsf{K}}\), we call the class \({\textsf{K}}\) a \(\boldsymbol{\tau }\)-algebraic semantics for \({\mathcal {S}}\).

  6. 6.

    \({\textsf{WH}_{\scriptscriptstyle (\textrm{N})}}\) is the subvariety of weakly Heyting algebras axiomatized by the defining equations of \(\textsf{WH}\) plus the equation \(x \wedge \square x \approx x\).

References

  • Albuquerque, H. (2016). Operators and strong versions in abstract algebraic logic. Universitat de Barcelona.

    Google Scholar 

  • Albuquerque, H. (2021). The Suszko operator relative to truth-equational logics. Mathematical Logic Quarterly, 67, 226–240. https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.202000034

  • Albuquerque, H., Font, J., Jansana, R., & Moraschini, T. (2018). Assertional logics, truth-equational logics and the hierarchies of AAL. Don Pigozzi on Abstract Algebraic Logic and Universal Algebra, 16, 53–79. https://doi.org/10.1007/978-3-319-74772-9

  • Blok, W., & Pigozzi, D. (1986). Protoalgebraic logics. Studia Logica, 45, 337–369.

    Article  Google Scholar 

  • Blok, W., & Pigozzi, D. (1989). Algebraizable logics. Memoirs of the American Mathematical Society, 77, vi+78.

    Google Scholar 

  • Blok, W. & Pigozzi, D. (2001). Abstract algebraic logic and the deduction theorem.

    Google Scholar 

  • Blok, W. & Raftery, J. (1999). Ideals in quasivarieties of algebras. Models, Algebras, and Proofs (Bogotá, 1995), 203, 167–186.

    Google Scholar 

  • Blok, W., & Raftery, J. (2008). Assertionally equivalent quasivarieties. International Journal of Algebra and Computation, 18, 589–681.

    Article  Google Scholar 

  • Büchi, J. & Owens, M. (1990). Skolem rings and their varieties (Report Purdue University CSD TR140, 1975). The Collected Works of J. Richard Büchi (pp. 161–221).

    Google Scholar 

  • Burris, S., & Sankappanavar, H. (1981). A course in universal algebra. Springer.

    Google Scholar 

  • Celani, S., & Jansana, R. (2005). Bounded distributive lattices with strict implication. MLQ Mathematical Logic Quarterly, 51, 219–246.

    Article  Google Scholar 

  • Czelakowski, J. (1981a). Equivalential logics. I. Studia Logica, 40, 227–236.

    Article  Google Scholar 

  • Czelakowski, J. (1981b). Equivalential logics. II. Studia Logica, 40, 355–372 (1982).

    Google Scholar 

  • Czelakowski, J. (1989). Relatively point regular quasivarieties. Polish Academy of Sciences, Institute of Philosophy and Sociology Bulletin of the Section of Logic, 18, 138–145.

    Google Scholar 

  • Czelakowski, J., & Operations, Consequence. (1992). Foundational studies. Warsaw: Polish Academy of Sciences.

    Google Scholar 

  • Czelakowski, J. (2001). Protoalgebraic logics. Kluwer Academic Publishers.

    Google Scholar 

  • Czelakowski, J., & Pigozzi, D. (2004a). Fregean logics. Annals of Pure and Applied Logic, 17–76.

    Google Scholar 

  • Czelakowski, J., & Pigozzi, D. (2004b). Fregean logics with the multiterm deduction theorem and their algebraization. Studia Logica, 78, 171–212.

    Article  Google Scholar 

  • Font, J. (1993). On the Leibniz congruences. Algebraic Methods in Logic and in Computer Science (Warsaw, 1991), 28, 17–36.

    Google Scholar 

  • Font, J. (1997). Belnap’s four-valued logic and De Morgan lattices. Logic Journal of the IGPL, 5, 1–29.

    Article  Google Scholar 

  • Font, J. (2003). Generalized matrices in abstract algebraic logic. Trends in Logic, 21, 57–86.

    Article  Google Scholar 

  • Font, J. (2006). Beyond Rasiowa’s algebraic approach to non-classical logics. Studia Logica, 82, 179–209.

    Google Scholar 

  • Font, J. (2016). Abstract algebraic logic – An introductory textbook. College Publications.

    Google Scholar 

  • Font, J. (2022). Abstract algebraic logic. Hiroakira Ono On Substructural Logics, 23, 71–142.

    Article  Google Scholar 

  • Font, J. & Jansana, R. (2009). A general algebraic semantics for sentential logics. Association for Symbolic Logic. Electronic version freely available through Project Euclid. http://projecteuclid.org/euclid.lnl/1235416965 (First edition published by Springer, 1996).

  • Idziak, K., & Wroński, A. (2009). Fregean varieties. International Journal of Algebra and Computation, 19, 595–645.

    Article  Google Scholar 

  • Jansana, R. (2002). Full models for positive modal logic. MLQ Mathematical Logic Quarterly, 48, 427–445.

    Article  Google Scholar 

  • Pigozzi, D. (1991). Fregean algebraic logic. Algebraic Logic (Budapest, 1988), 54, 473–502.

    Google Scholar 

  • Raftery, J. (2006). The equational definability of truth predicates. Reports on Mathematical Logic, 95–149.

    Google Scholar 

  • Wójcicki, R., Referential matrix semantics for propositional calculi. Polish Academy of Sciences, Institute of Philosophy and Sociology Bulletin of the Section of Logic. 8, 170–176 (1979).

    Google Scholar 

  • Wójcicki, R. (1988). Theory of logical calculi: Basic theory of consequence operations. Kluwer Academic Publishers Group.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Albuquerque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albuquerque, H., Jansana, R. (2024). Assertional Logics and the Frege Hierarchy. In: Malinowski, J., Palczewski, R. (eds) Janusz Czelakowski on Logical Consequence. Outstanding Contributions to Logic, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-44490-6_9

Download citation

Publish with us

Policies and ethics