Skip to main content

Alleviation of Climate Catastrophe in Agriculture Through Adoption of Climate-Smart Technologies

  • Chapter
  • First Online:
Climate Crisis: Adaptive Approaches and Sustainability

Abstract

Present-day agriculture is facing enough burden to feed the future human population; since climate change is considered a vital negative factor for agricultural sustainability. It has been already well established that farming is the most vulnerable sector that has been affected by climatic aberrations. Anthropogenic interventions in agriculture are one of the major causes of the emission of greenhouse gases (GHGs) release to atmosphere and global warming impacts crop growth leading to a negative impact on farm output. Therefore, mitigation as well as adaptation of climatic aberration impacts should be considered, as the world population is increasing day by day. The adaptation of climate-smart technologies has enough potential to reduce the ill effects of changing climate on agriculture. In this regard, the adoption of efficient water management practices, climate-resilient crops and cropping systems, agroforestry systems, carbon sequestration, lowering the GHGs emission, integrated farming systems and appropriate inputs delivery by precision and smart agriculture technologies can show the arena of climate-smart agriculture. The present chapter is focused on climate-resilient agricultural technologies that are precisely relevant to the consequences of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MD, Islam M, Salahin N, Hasanuzzaman M (2014) Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. Sci World J 437283. https://doi.org/10.1155/2014/437283

  • Allen SK, Plattner GK, Nauels A, Xia Y, Stocker TF (2014) Climate change 2013: the physical science basis. An overview of the working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change (IPCC). In EGU General Assembly Conference Abstracts, p 3544

    Google Scholar 

  • Almeida RF, Queiroz IDS, Mikhael JER, Oliveira RC, Borges EN (2019) Enriched animal manure as a source of phosphorus in sustainable agriculture. Intl J Recycl Organic Waste Agricult 8:203–210

    Article  Google Scholar 

  • Anantha KH, Garg KK, Petrie CA, Dixit S (2021) Seeking sustainable pathways for fostering agricultural transformation in peninsular India. Environ Res Lett 16(4):044032

    Article  CAS  Google Scholar 

  • Anwar MR, Li Liu D, Farquharson R, Macadam I, Abadi A, Finlayson J, Ramilan T (2015) Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agric Syst 132:133–144

    Article  Google Scholar 

  • Arora M, Goel N, Singh P (2005) Evaluation of temperature trends over India/Evaluation de tendances de température en Inde. Hydrol Sci J 50(1):81–93

    Article  Google Scholar 

  • Ashfaq M, Lal MH, Moghal AAB, Murthy VR (2020) Carbon footprint analysis of coal gangue in geotechnical engineering applications. Indian Geotech J 50(4):646–654

    Article  Google Scholar 

  • Aviles D, Berglund K, Wesström I, Joel A (2020) Effect of liming products on soil detachment resistance, measured with a cohesive strength meter. Acta Agricult Scandinavica Sect B Soil Plant Sci 70(1):48–55

    CAS  Google Scholar 

  • Balafoutis A, Beck B, Fountas S, Vangeyte J, Van der Wal T, Soto I, Eory V (2017) Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 9(8):1339

    Article  Google Scholar 

  • Bationo A, Fening JO, Kwaw A (2018) Assessment of soil fertility status and integrated soil fertility management in Ghana. In: Bationo et al. (eds) Improving the profitability, sustainability and efficiency of nutrients through site specific fertilizer recommendations in West Africa agro-ecosystems. Springer Nature, pp 93–138

    Google Scholar 

  • Behera UK, France J (2016) Integrated farming systems and the livelihood security of small and marginal farmers in India and other developing countries. Adv Agron 138:235–282

    Article  Google Scholar 

  • Benbi DK, Kiranvir BRAR, Sharma S (2015) Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. Pedosphere 25(4):534–545

    Article  CAS  Google Scholar 

  • Bhadra P, Maitra S, Shankar T, Hossain A, Praharaj S, Tariq Aftab T (2022) Climate change impact on plants: plant responses and adaptations. In: Plant perspectives to global climate changes, Elsevier Inc/Academic, pp 1–24. https://doi.org/10.1016/B978-0-323-85665-2.00004-2

  • Billah M, Aktar S, Brestic M, Zivcak M, Khaldun ABM, Uddin MS, Bagum SA, Yang X, Skalicky M, Mehari TG, Maitra S, Hossain A (2021, 1910) Progressive genomic approaches to explore drought- and salt-induced oxidative stress responses in plants under changing climate. Plants 10. https://doi.org/10.3390/plants10091910

  • Borges O, Raimundo F, Coutinho J, Gonçalves B, Oliveira I, Martins A, Madeira M (2018) Carbon fractions as indicators of organic matter dynamics in chestnut orchards under different soil management practices. Agrofor Syst 92:301–310

    Google Scholar 

  • Button ES, Marshall M, Sánchez-Rodríguez AR, Blaud A, Abadie M, Chadwick DR, Jones DL (2023) Greenhouse gas production, diffusion and consumption in a soil profile under maize and wheat production. Geoderma 430:116310

    Article  CAS  Google Scholar 

  • Cavigelli MA, Mirsky SB, Teasdale JR, Spargo JT, Doran J (2013) Organic grain cropping systems to enhance ecosystem services. Renew Agricult Food Syst 28(2):145–159

    Article  Google Scholar 

  • Cerri CC, Bernoux M, Maia SMF, Cerri CEP, Costa Junior C, Feigl BJ, Carvalho JLN (2010) Greenhouse gas mitigation options in Brazil for land-use change, livestock and agriculture. Sci Agric 67:102–116

    Article  CAS  Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4(4):287–291

    Article  Google Scholar 

  • Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103:791–802

    Google Scholar 

  • Chen C, Chen HY, Chen X, Huang Z (2019) Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun 10(1):1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang L, Niu Z, Zhang M, Li J (2020) The effects of projected climate change and extreme climate on maize and rice in the Yangtze River basin, China. Agricult Forest Meteorol 282:107867–107881

    Article  Google Scholar 

  • Chikowo R, Zingore S, Snapp S, Johnston A (2014) Farm typologies, soil fertility variability and nutrient management in smallholder farming in sub-Saharan Africa. Nutr Cycl Agroecosyst 100:1–18

    Article  CAS  Google Scholar 

  • Choudhury S, Moulick D (2022) Response of field crops to abiotic stress: current status and future prospects, 1st edn. CRC Press. https://doi.org/10.1201/9781003258063

    Book  Google Scholar 

  • Choudhury S, Sharma P, Moulick D, Mazumder MK (2021a) Unrevealing metabolomics for abiotic stress adaptation and tolerance in plants. J Crop Sci Biotechnol 24(5):479–493. https://doi.org/10.1007/s12892-021-00102-8

    Article  CAS  Google Scholar 

  • Choudhury S, Moulick D, Mazumder MK (2021b) Secondary metabolites protect against metal and metalloid stress in rice: an in silico investigation using dehydroascorbate reductase. Acta Physiol Plant 43:1–10. https://doi.org/10.1007/s11738-020-03173-2

    Article  CAS  Google Scholar 

  • Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3(2):275–293

    Article  CAS  Google Scholar 

  • Crusciol CAC, Nascente AS, Mateus GP, Borghi E, Leles EP, Santos ND (2013) Effect of intercropping on yields of corn with different relative maturities and palisadegrass. Agron J 105(3):599–606

    Article  Google Scholar 

  • da Cunha Dias TA, Lora EES, Maya DMY, del Olmo OA (2021) Global potential assessment of available land for bioenergy projects in 2050 within food security limits. Land Use Policy 105:105346

    Article  Google Scholar 

  • Dabney SM, Delgado JA, Meisinger JJ, Schomberg HH, Liebig MA, Kaspar T, Reeves W (2010) Using cover crops and cropping systems for nitrogen management. Advances in nitrogen management for water quality, Soil and Water Conservation Society, USA, pp 231–282

    Google Scholar 

  • Daryanto Y, Christata B (2021) Optimal order quantity considering carbon emission costs, defective items, and partial backorder. Uncertain Supply Chain Manage 9(2):307–316

    Article  Google Scholar 

  • De Moraes Sa JC, Tivet F, Lal R, de Oliveira Ferreira A, Briedis C, Inagaki TM, Romaniw J (2020) Carbon management practices and benefits in conservation agriculture systems: soil organic carbon fraction losses and restoration. In: Advances in conservation agriculture. Burleigh Dodds Science Publishing, pp 229–266

    Chapter  Google Scholar 

  • Debnath S, Mishra A, Mailapalli DR, Raghuwanshi NS (2021a) Identifying most promising agronomic adaptation strategies to close rainfed rice yield gap in future: a model-based assessment. J Water Climate Change 12(6):2854–2874

    Article  Google Scholar 

  • Debnath S, Mishra A, Mailapalli DR, Raghuwanshi NS, Sridhar V (2021b) Assessment of rice yield gap under a changing climate in India. J Water Climate Change 12(4):1245–1267

    Article  Google Scholar 

  • Derpsch R, Friedrich T, Kassam A, Li H (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Intl J Agricult Biolog Eng 3(1):1–25

    Google Scholar 

  • Dhaliwal SS, Naresh RK, Gupta RK, Panwar AS, Mahajan NC, Singh R, Mandal A (2020) Effect of tillage and straw return on carbon footprints, soil organic carbon fractions and soil microbial community in different textured soils under rice–wheat rotation: a review. Rev Environ Sci Biotechnol 19:103–115

    Article  CAS  Google Scholar 

  • Díaz-José J, Rendón-Medel R, Govaerts B, Aguilar-Ávila J, Muñoz-Rodriguez M (2016) Innovation diffusion in conservation agriculture: a network approach. Eur J Dev Res 28:314–329

    Article  Google Scholar 

  • dos Santos TB, Ribas AF, de Souza SGH, Budzinski IGF, Domingues DS (2022) Physiological responses to drought, salinity, and heat stress in plants: a review. Stress 2(1):113–135

    Article  Google Scholar 

  • Dudney J, Willing CE, Das AJ, Latimer AM, Nesmith JC, Battles JJ (2021) Nonlinear shifts in infectious rust disease due to climate change. Nat Commun 12(1):5102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Egziabher KG, Mathijs E, Deckers JA, Gebrehiwot K, Bauer H, Maertens M (2013) The economic impact of a new rural extension approach in northern Ethiopia (no. 1067-2016-86816)

    Google Scholar 

  • Elahi E, Khalid Z, Tauni MZ, Zhang H, Lirong X (2022) Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: a retrospective survey of rural Punjab, Pakistan. Technovation 117:102255

    Article  Google Scholar 

  • Fagodiya RK, Pathak H, Bhatia A, Jain N, Gupta DK, Kumar A, Tomer R (2019) Nitrous oxide emission and mitigation from maize–wheat rotation in the upper Indo-Gangetic Plains. Carbon Manage 10(5):489–499

    Article  CAS  Google Scholar 

  • Fritsche-Neto R, Galli G, Borges KLR, Costa-Neto G, Alves FC, Sabadin F, Crossa J (2021) Optimizing genomic-enabled prediction in small-scale maize hybrid breeding programs: a roadmap review. Front Plant Sci 12:658267

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaikwad DJ, Ubale NB, Pal A, Singh S, Ali MA, Maitra S (2022) Abiotic stresses impact on major cereals and adaptation options – a review. Res Crops 23(4):896–915. https://doi.org/10.31830/2348-7542.2022.ROC-913

    Article  Google Scholar 

  • Gautam R, Shriwastav CP, Lamichhane S, Baral BR (2021) The residual effect of pre-rice green manuring on a succeeding wheat crop (Triticum aestivum L.) in the rice-wheat cropping system in Banke, Nepal. Intl J Agron 2021:1–10

    Article  Google Scholar 

  • Ghosh D, Brahmachari K, Skalicky M, Hossain A, Sarkar S, Dinda NK, Das A, Pramanick B, Moulick D, Brestic M, Raza MA (2020a) Nutrients supplementation through organic manures influence the growth of weeds and maize productivity. Molecules 25(21):4924. https://doi.org/10.3390/molecules25214924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Brahmachari K, Brestic M, Ondrisik P, Hossain A, Skalicky M, Sarkar S, Moulick D, Dinda NK, Das A, Pramanick B (2020b) Integrated weed and nutrient management improve yield, nutrient uptake and economics of maize in the rice-maize cropping system of Eastern India. Agronomy 10(12):1906. https://doi.org/10.3390/agronomy10121906

    Article  CAS  Google Scholar 

  • Ghosh D, Brahmachari K, Das A, Hassan MM, Mukherjee PK, Sarkar S, Dinda NK, Pramanick B, Moulick D, Maitra S, Hossain A (2021) Assessment of energy budgeting and its indicator for sustainable nutrient and weed management in a rice-maize-green gram cropping system. Agronomy 11(1):166. https://doi.org/10.3390/agronomy11010166

    Article  CAS  Google Scholar 

  • Ghosh D, Brahmachari K, Skalický M, Roy D, Das A, Sarkar S, Moulick D, Brestič M, Hejnak V, Vachova P, Hassan MM (2022a) The combination of organic and inorganic fertilizers influence the weed growth, productivity and soil fertility of monsoon rice. PloS One 17(1):e0262586. https://doi.org/10.1371/journal.pone.0262586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Brahmachari K, Sarkar S, Dinda NK, Das A, Moulick D (2022b) Impact of nutrient management in rice-maize-greengram cropping system and integrated weed management treatments on summer greengram productivity. https://doi.org/10.5958/0974-8164.2022.00004.1

  • Hassan S, Ahmad A, Batool F, Rashid B, Husnain T (2021) Genetic modification of Gossypium arboreum universal stress protein (GUSP1) improves drought tolerance in transgenic cotton (Gossypium hirsutum). Physiol Mol Biol Plants 27(8):1779–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans Royal Soc B: Biol Sci 363(1491):543–555

    Article  Google Scholar 

  • Hossain A, Pramanick B, Bhutia KL, Ahmad Z, Moulick D, Maitra S, Ahmad A, Aftab T (2021a) Emerging roles of osmoprotectant glycine betaine against salt-induced oxidative stress in plants: a major outlook of maize (Zea mays L.). In: Frontiers in plant-soil interaction. Academic, pp 567–587. https://doi.org/10.1016/B978-0-323-90943-3.00015-8

    Chapter  Google Scholar 

  • Hossain A, Ahmad Z, Moulik D, Maitra S, Bhadra P, Ahmad A, Garai S, Mondal M, Roy A, Sabagh AE, Aftab T (2021b) Jasmonates and salicylates: mechanisms, transport and signalling during abiotic stress in plants. Jasmonates and salicylates signaling in plants, pp 1–29. https://doi.org/10.1007/978-3-030-75805-9_1

  • Hossain A, Maitra S, Pramanick B, Bhutia KL, Ahmad Z, Moulik D, Syed MA, Shankar T, Adeel M, Hassan MM, \Aftab T (2022) Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. In: Plant perspectives to global climate changes. Academic, pp 471–518. https://doi.org/10.1016/B978-0-323-85665-2.00011-X

  • Hu G, Zhao L, Wu T, Wu X, Park H, Fedorov A, Zou D (2021) Spatiotemporal variations and regional differences in air temperature in the permafrost regions in the Northern hemisphere during 1980–2018. Sci Total Environ 791:148358

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Sun M, Zhang A, Chen J, Zhang J, Lin C, Huang L (2021) Transcriptional changes in pearl millet leaves under heat stress. Genes 12(11):1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal MF, Zhang Y, Kong P, Wang Y, Cao K, Zhao L, Fan X (2023) High-yielding nitrate transporter cultivars also mitigate methane and nitrous oxide emissions in Paddy. Front Plant Sci 14:433

    Article  Google Scholar 

  • Ivezić V, Lorenz K, Lal R (2022) Soil organic carbon in alley cropping systems: a meta-analysis. Sustainability 14(3):1296

    Article  Google Scholar 

  • Jat HS, Datta A, Choudhary M, Sharma PC, Yadav AK, Choudhary V, McDonald A (2019) Climate smart agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. Catena 181:104059

    Article  CAS  Google Scholar 

  • Kamal NLM, Itam Z, Sivaganese Y, Razak NA (2020) Carbon dioxide sequestered concrete. Intl J Integr Eng 12(9):45–51

    Google Scholar 

  • Kaur H, Singh SP (2019) Sustainable procurement and logistics for disaster resilient supply chain. Ann Oper Res 283:309–354

    Article  MathSciNet  Google Scholar 

  • Keesstra S, Nunes J, Novara A, Finger D, Avelar D, Kalantari Z, Cerdà A (2018) The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci Total Environ 610:997–1009

    Article  PubMed  Google Scholar 

  • Kothari A, Lachowiec J (2021) Roles of brassinosteroids in mitigating heat stress damage in cereal crops. Int J Mol Sci 22(5):2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar KS (2009) Climate sensitivity of Indian agriculture: Madras School of Economics Chennai, working paper 43. https://www.mse.ac.in/wp-content/uploads/2016/09/working-paper-43.pdf

  • Kumar U, Werners S, Roy S, Ashraf S, Hoang LP, Kumar Datta D, Ludwig F (2020) Role of information in farmers’ response to weather and water related stresses in the lower Bengal Delta, Bangladesh. Sustainability 12(16):6598

    Article  Google Scholar 

  • Kumar S, Singh VP, Saini DK, Sharma H, Saripalli G, Kumar S et al (2021) Meta-QTLs, ortho-MQTLs, and candidate genes for thermotolerance in wheat (Triticum aestivum L.). Mol Breed 41:1–22

    Article  Google Scholar 

  • Kumar S, Gopinath KA, Sheoran S, Meena RS, Srinivasarao C, Bedwal S, Praharaj CS (2022) Pulse-based cropping systems for soil health restoration, resources conservation, and nutritional and environmental security in rainfed agroecosystems. Front Microbiol, 13:1041124. https://doi.org/10.3389/fmicb.2022.1041124

  • Kundu A, Dwivedi S, Chandra V (2014) Precipitation trend analysis over eastern region of India using CMIP5 based climatic models. The international archives of photogrammetry. Remote Sens Spatial Inform Sci 40(8):1437

    Google Scholar 

  • Kuyah S, Muoni T, Bayala J, Chopin P, Dahlin AS, Hughes K, Öborn I (2022) Grain legumes and dryland cereals for enhancing carbon sequestration in semi-arid and sub-humid agro-ecologies of Africa and South Asia. Working paper. ICRISAT, Hyderabad

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22

    Article  CAS  Google Scholar 

  • Lal R (2020) Managing organic matter content for restoring health and ecosystem services of soils of India. J Indian Soc Soil Sci 68(1):1–15

    Article  MathSciNet  Google Scholar 

  • Lasco RD, Delfino RJP, Catacutan DC, Simelton ES, Wilson DM (2014) Climate risk adaptation by smallholder farmers: the roles of trees and agroforestry. Curr Opin Environ Sustain 6:83–88

    Article  Google Scholar 

  • Lehmann J, Joseph S (eds) (2015) Biochar for environmental management: science, technology and implementation. Routledge

    Google Scholar 

  • Li S, Zhang Y, Yan W, Shangguan Z (2018) Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil Tillage Res 183:100–108

    Article  Google Scholar 

  • Li J, Wang YK, Guo Z, Li JB, Tian C, Hua DW, Xu Y (2020) Effects of conservation tillage on soil physicochemical properties and crop yield in an arid loess plateau, China. Sci Rep 10(1):1–15

    Google Scholar 

  • Li S, Zhao J, Li J, Shao R, Li H, Fang W, Liu T (2022) Inter-and mixed cropping of different varieties improves high-temperature tolerance during flowering of summer maize. Sustainability 14(12):6993

    Article  Google Scholar 

  • Liao R, Zhang S, Zhang X, Wang M, Wu H, Zhangzhong L (2021a) Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: proof of concept. Agric Water Manag 245:106632

    Article  Google Scholar 

  • Liao Z, Chen Y, Li W, Zhai P (2021b) Growing threats from unprecedented sequential flood-hot extremes across China. Geophys Res Lett 48(18):e2021GL094505

    Article  Google Scholar 

  • Lobell DB, Roberts MJ, Schlenker W, Braun N, Little BB, Rejesus RM, Hammer GL (2014) Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344(6183):516–519

    Article  CAS  PubMed  Google Scholar 

  • Maitra S, Palai JB, Manasa P, Kumar DP (2019) Potential of intercropping system in sustaining crop productivity. Intl J Agricult Environ Biotechnol 12(1):39–45

    Article  Google Scholar 

  • Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H, Brahmachari K, Shankar T, Bhadra P, Palai JB, Jena J, Bhattacharya U, Duvvada SK, Lalichetti S, Sairam M (2021) Intercropping–a low input agricultural strategy for food and environmental security. Agronomy 11:343. https://doi.org/10.3390/agronomy11020343

    Article  CAS  Google Scholar 

  • Maitra S, Praharaj S, Hossain A, Patro TSSK, Pramanick B, Shankar T, Sahoo U (2022) Small millets: the next-generation smart crops in the modern era of climate change. In: Pukade RN et al (eds) Omics of climate resilient small millets. Springer Nature Singapore, Singapore, pp 1–25

    Google Scholar 

  • Malyan SK, Kumar SS, Fagodiya RK, Ghosh P, Kumar A, Singh R, Singh L (2021) Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renew Sust Energ Rev 149:111379

    Article  Google Scholar 

  • Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Zhou B (2021) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, p 2

    Google Scholar 

  • Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14

    Article  Google Scholar 

  • Ministry of Earth Sciences (2010) Climate profile of India, met monograph no. In: Environment Meteorology-01/2010. Government of India, Indian Meteorological Department, Ministry of Earth Sciences

    Google Scholar 

  • Ministry of Environment and Forests (2010) Climate change and India: a 4×4 assessment – a sectoral and regional analysis, Indian network for climate change assessment report 2, Ministry of Environment and forests, Government of India

    Google Scholar 

  • Mishra A, Singh R, Raghuwanshi NS, Chatterjee C, Froebrich J (2013) Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. Sci Total Environ 468:S132–S138

    Article  PubMed  Google Scholar 

  • Mishra A, Ketelaar JW, Uphoff N, Whitten M (2021) Food security and climate-smart agriculture in the lower Mekong basin of Southeast Asia: evaluating impacts of system of rice intensification with special reference to rainfed agriculture. Int J Agric Sustain 19(2):152–174

    Article  Google Scholar 

  • Mohammad M, Isaifan RJ, Weldu YW, Rahman MA, Al-Ghamdi SG (2020) Progress on carbon dioxide capture, storage and utilisation. Intl J Global Warm 20(2):124–144

    Article  Google Scholar 

  • Monteiro RA, Camara MC, de Oliveira JL, Campos EVR, Carvalho LB, de Freitas Proenca PL, Fraceto LF (2021) Zein based-nanoparticles loaded botanical pesticides in pest control: an enzyme stimuli-responsive approach aiming sustainable agriculture. J Hazard Mater 417:126004

    Article  CAS  PubMed  Google Scholar 

  • Morugán-Coronado A, Linares C, Gómez-López MD, Faz Á, Zornoza R (2020) The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: a meta-analysis of field studies. Agric Syst 178:102736

    Article  Google Scholar 

  • Najeeb S, Mahender A, Anandan A, Hussain W, Li Z, Ali J (2021) Genetics and breeding of low-temperature stress tolerance in rice. In: Rice improvement: physiological, molecular breeding and genetic perspectives, pp 221–280

    Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, Vries BD, Fenhann J, Gaffin S, Zhou D (2000) Special report on emissions scenarios. IPCC, available online: https://www.ipcc.ch/site/assets/uploads/2018/03/emissions_scenarios-1.pdf. Accessed 25 Dec 2022

  • Nayak PK, Nayak AK, Kumar A, Kumar U, Panda BB, Satapathy BS, Pathak H (2020) Rice based integrated farming Systems in Eastern India: a viable technology for productivity and ecological security. NRRI research bulletin, p 24

    Google Scholar 

  • Nguyen HD, Fox D, Dang DK, Pham LT, Viet Du QV, Nguyen THT, Petrisor AI (2021) Predicting future urban flood risk using land change and hydraulic modeling in a river watershed in the central province of Vietnam. Remote Sens 13(2):262

    Article  Google Scholar 

  • Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, Webster TM, Barrett M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Science 60(SP1):31–62

    Article  CAS  Google Scholar 

  • Nyamangara J, Chikowo R, Rusinamhodzi L, Mazvimavi K (2014) Conservation agriculture in southern Africa. In: Conservation agriculture: global prospects and challenges. CABI, Wallingford, pp 339–351

    Chapter  Google Scholar 

  • Panda M, Nandi S, Sahoo U, Sairam M (2022) Integrated farming system for agricultural sustainability. Indian J Nat Sci 13(71):41311–41317

    Google Scholar 

  • Paramesh V, Ravisankar N, Behera U, Arunachalam V, Kumar P, Solomon Rajkumar R, Rajkumar S (2022) Integrated farming system approaches to achieve food and nutritional security for enhancing profitability, employment, and climate resilience in India. Food Energy Secur 11(2):321

    Article  Google Scholar 

  • Pemunta NV, Mbu-Arrey OP (2013) The tragedy of the governmentality of nature: the case of national parks in Cameroon. In: Smith JB (ed) National parks: sustainable development, conservation strategies, and environmental effects. Nova Science Publishers Inc, USA), pp 1–56

    Google Scholar 

  • Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops–a meta-analysis. Agric Ecosyst Environ 200:33–41

    Article  CAS  Google Scholar 

  • Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Godfray HCJ et al (2018) Global assessment of agricultural system redesign for sustainable intensification. Nature Sustain 1(8):441–446

    Article  Google Scholar 

  • Qin Y, Chen Z, Ding B, Li Z (2020) Impact of sand mining on the carbon sequestration and nitrogen removal ability of soil in the riparian area of Lijiang River, China. Environ Pollut 261:114220

    Article  CAS  PubMed  Google Scholar 

  • Rahman MR, Lateh H (2017) Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model. Theor Appl Climatol 128(1–2):27–41

    Article  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8(2):34. https://doi.org/10.3390/plants8020034

    Article  CAS  Google Scholar 

  • Reddy KR, Hodges HF, Reddy VR (2010) Climate change and global crop productivity. CABI

    Google Scholar 

  • Robinson SA (2020) Climate change adaptation in SIDS: a systematic review of the literature pre and post the IPCC fifth assessment report. Wiley Interdiscip Rev Clim Chang 11(4):e653

    Article  Google Scholar 

  • Sagar L, Praharaj S, Singh S, Attri M, Pramanick B, Maitra S, Hossain A, Tanmoy Shankar T, Palai JB, Sahoo U (2022) Drought and heat stress tolerance in field crops: consequences and adaptation strategies. In: Choudhury S, Moulick D (eds) CRC Press, pp 91–102. https://doi.org/10.1201/9781003258063-8

  • Sairam M, Maitra S, Praharaj S, Nath S, Shankar T, Sahoo U et al (2023) An insight into the consequences of emerging contaminants in soil and water and plant responses. In: Emerging contaminants and plants: interactions, adaptations and remediation technologies. Springer, Cham, pp 1–27

    Google Scholar 

  • Sarkar S, Skalicky M, Hossain A, Brestic M, Saha S, Garai S et al (2020) Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability 12(23):9808

    Article  Google Scholar 

  • Sarkar D, Dubey PK, Chaurasiya R, Sankar A, Chatterjee N, Ganguly S, Rakshit A (2021) Organic interventions conferring stress tolerance and crop quality in agroecosystems during the United Nations decade on ecosystem restoration. Land Degrad Dev 32(17):4797–4816

    Article  Google Scholar 

  • Schmidt-Thome P, Nguyen TH, Pham TL, Jarva J, Nuottimäki K, Schmidt-Thome P, Nuottimäki K (2015) Climate change in Vietnam. Climate change adaptation measures in Vietnam: development and implementation, pp 7–15

    Google Scholar 

  • Sharma G, Shrestha S, Kunwar S, Tseng TM (2021) Crop diversification for improved weed management: a review. Agriculture 11(5):461

    Article  Google Scholar 

  • Shehu BM, Lawan BA, Jibrin JM, Kamara AY, Mohammed IB, Rurinda J, Merckx R (2019) Balanced nutrient requirements for maize in the Northern Nigerian savanna: parameterization and validation of QUEFTS model. Field Crop Res 241:107585

    Article  Google Scholar 

  • Shekhawat K, Rathore SS, Chauhan BS (2020) Weed management in dry direct-seeded rice: a review on challenges and opportunities for sustainable rice production. Agronomy 10(9):1264

    Article  CAS  Google Scholar 

  • Sherwood SC, Webb MJ, Annan JD, Armour KC, Forster PM, Hargreaves JC, Zelinka MD (2020) An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev Geophys 58(4):e2019RG000678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Wang M, Liu Y (2021) Crop yield and production responses to climate disasters in China. Sci Total Environ 750:141147

    Article  CAS  PubMed  Google Scholar 

  • Shrestha J, Subedi S, Timsina KP, Subedi S, Pandey M, Shrestha A, Hossain MA (2021) Sustainable intensification in agriculture: an approach for making agriculture greener and productive. J Nepal Agricult Res Council 7:133–150

    Article  Google Scholar 

  • Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, Malley J (2019) IPCC, 2019: climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

    Google Scholar 

  • Silva JND, Bezerra Neto F, Lima JSSD, Chaves AP, Nunes RLC, Rodrigues GSDO, Santos ECD (2020) Sustainability of carrot-cowpea intercropping systems through optimization of green manuring and spatial arrangements. Ciência Rural 51

    Google Scholar 

  • Six J, Feller C, Denef K, Ogle S, de Moraes Sa JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage. Agronomie 22(7–8):755–775

    Article  Google Scholar 

  • Smith P, Soussana JF, Angers D, Schipper L, Chenu C, Rasse DP, Klumpp K (2020) How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob Chang Biol 26(1):219–241

    Article  PubMed  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Averyt K, Marquis M (eds) (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press, Cambridge

    Google Scholar 

  • Song Y, Wang C, Linderholm HW, Fu Y, Cai W, Xu J, Chen D (2022) The negative impact of increasing temperatures on rice yields in southern China. Sci Total Environ 820:153262

    Article  CAS  PubMed  Google Scholar 

  • Stocker T (ed) (2014) Climate change 2013: the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Sundari RS, Arshad A, Sulistyowati L, Noor TI, Setiawan I (2021) Enhancing food security throughout Aquaponicsin urban farming development strategy. J Phys Conf Ser 1764(1):012209. IOP Publishing

    Google Scholar 

  • Swapna P, Ravichandran M, Nidheesh G, Jyoti J, Sandeep N, Deepa JS, Unnikrishnan AS (2020) Sea-level rise. Assessment of climate change over the Indian region: a report of the Ministry of Earth Sciences (MoES), Government of India, pp 175–189

    Google Scholar 

  • Thakur M, Kumar R (2021) Mulching: boosting crop productivity and improving soil environment in herbal plants. J Appl Res Med Aromat Plants 20:100287

    Google Scholar 

  • Thierfelder C, Baudron F, Setimela P, Nyagumbo I, Mupangwa W, Mhlanga B, Gérard B (2018) Complementary practices supporting conservation agriculture in southern Africa: a review. Agron Sustain Develop 38:1–22

    Article  Google Scholar 

  • Ullah S, Ai C, Huang S, Song D, Abbas T, Zhang J, He P (2020) Substituting ecological intensification of agriculture for conventional agricultural practices increased yield and decreased nitrogen losses in North China. Appl Soil Ecol 147:103395

    Article  Google Scholar 

  • Van Vuuren DP, Edmonds JA, Kainuma M, Riahi K, Weyant J (2011) A special issue on the RCPs. Clim Chang 109:1–4

    Article  Google Scholar 

  • Waheed R, Ignacio JC, Arbelaez JD, Juanillas VM, Asif M, Henry A, Arif M (2021) Drought response QTLs in a Super Basmati× Azucena population by high-density GBS-based SNP linkage mapping. Plant Breed 140(5):758–774

    Article  CAS  Google Scholar 

  • Wang B, Cai W, Li J, Wan Y, Guo C, Wilkes A, Liu K (2020a) Leaf photosynthesis and stomatal conductance acclimate to elevated [CO2] and temperature thus increasing dry matter productivity in a double rice cropping system. Field Crop Res 248:107735

    Article  Google Scholar 

  • Wang X, Feng Y, Yu L, Shu Y, Tan F, Gou Y, Wang J (2020b) Sugarcane/soybean intercropping with reduced nitrogen input improves crop productivity and reduces carbon footprint in China. Sci Total Environ 719:137517

    Article  CAS  PubMed  Google Scholar 

  • Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigné J (2014) Agroecological practices for sustainable agriculture: a review. Agron Sustain Develop 34(1):1–20

    Article  Google Scholar 

  • Wu B, Zhai B, Mu H, Peng X, Wang C, Patwary AK (2021a) Evaluating an economic application of renewable generated hydrogen: a way forward for green economic performance and policy measures. Environ Sci Pollut Res 29(10):15144–15158

    Article  Google Scholar 

  • Wu JZ, Zhang J, Ge ZM, Xing LW, Han SQ, Chen SHEN, Kong FT (2021b) Impact of climate change on maize yield in China from 1979 to 2016. J Integr Agric 20(1):289–299

    Article  Google Scholar 

  • Xu L, Du X (2022) Land certification, rental market participation, and household welfare in rural China. Agric Econ 53(1):52–71

    Article  Google Scholar 

  • Yadav S, Kumar R, Chandra MS, Singh S, Yadav RB, Kumar M (2020) Soil organic carbon sequestration and carbon pools in Rice based cropping Systems in Indo-Gangetic Plains, an overview. Intl Res J Pure Appll Chem 1:122–136

    Article  Google Scholar 

  • Yang L, Lei L, Li P, Wang J, Wang C, Yang F, Zou D (2021) Identification of candidate genes conferring cold tolerance to rice (Oryza sativa L.) at the bud-bursting stage using bulk segregant analysis sequencing and linkage mapping. Front Plant Sci 12:647239

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu C, Miao R, Khanna M (2021) Maladaptation of US corn and soybeans to a changing climate. Sci Rep 11(1):1–12

    Google Scholar 

  • Zahid A, Ali S, Ahmed M, Iqbal N (2020) Improvement of soil health through residue management and conservation tillage in rice-wheat cropping system of Punjab, Pakistan. Agronomy 10(12):1844

    Article  CAS  Google Scholar 

  • Zhai F, Zhuang J (2012) Agricultural impact of climate change: a general equilibrium analysis with special reference to Southeast Asia. Climate change in Asia and the Pacific: how can countries adapt, pp 17–35

    Google Scholar 

  • Zhang WF, Dou ZX, He P, Ju XT, Powlson D, Chadwick D, Zhang FS (2013) New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc Natl Acad Sci 110(21):8375–8380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang H, Sun X, Fan J, Zhang F, Zheng J, Li Y (2021) Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: a meta-analysis. Agric Water Manag 243:106444

    Article  Google Scholar 

  • Zhao H, Ning P, Chen Y, Liu J, Ghaffar SA, Xiaohong T, Shi J (2019) Effect of straw amendment modes on soil organic carbon, nitrogen sequestration and crop yield on the North-Central Plain of China. Soil Use Manag 35(3):511–525

    Article  Google Scholar 

  • Zingore S, Murwira HK, Delve RJ, Giller KE (2007) Influence of nutrient management strategies on variability of soil fertility, crop yields and nutrient balances on smallholder farms in Zimbabwe. Agric Ecosyst Environ 119(1–2):112–126

    Article  CAS  Google Scholar 

  • Ziska LH, Blumenthal DM, Runion GB, Hunt ER Jr, Diaz-Soltero H (2011) Invasive species and climate change: an agronomic perspective. Clim Chang 105(1–2):13–42

    Article  Google Scholar 

  • Zougmoré RB, Partey ST, Ouédraogo M, Torquebiau E, Campbell BM (2018) Facing climate variability in sub-Saharan Africa: analysis of climate-smart agriculture opportunities to manage climate-related risks. Cahiers Agricultures (TSI) 27(3):1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santosh, D.T. et al. (2023). Alleviation of Climate Catastrophe in Agriculture Through Adoption of Climate-Smart Technologies. In: Chatterjee, U., Shaw, R., Kumar, S., Raj, A.D., Das, S. (eds) Climate Crisis: Adaptive Approaches and Sustainability. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-031-44397-8_17

Download citation

Publish with us

Policies and ethics