Skip to main content

Implementation Research of Alternative Fuels and Technologies in Maritime Transport

  • Chapter
  • First Online:
Modern Technologies in Energy and Transport

Abstract

As part of its commitment to clean transport, the world leading countries have pledged to become climate-neutral by 2050. Already in the interim, the goal is to gradually reduce greenhouse gas emissions by 55 percent by 2030. In this context, maritime transport, where fossil fuels have been used for quite some time, is waiting to be transformed in order to become part of the program on the way to achieving the international community's climate goals. In order to achieve these results, there has been a special push to explore low sulfur or low emission technologies, alternative or low carbon fuels and other sustainable fuel and energy efficient technologies. Thus, the use of alternative fuels and LNG in particular virtually nullifies the risks of water pollution from shipping and spills, and significantly reduces emissions of pollutants and greenhouse gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solakivi, T., Paimander, A., Ojala, L.: Cost competitiveness of alternative maritime fuels in the new regulatory framework. Transp. Res. Part D: Transp. Environ. 113, 103500 (2022). https://doi.org/10.1016/j.trd.2022.103500

    Article  Google Scholar 

  2. Kouzelis, K., Frouws, K., van Hassel, E.: Maritime fuels of the future: what is the impact of alternative fuels on the optimal economic speed of large container vessels. J. Shipp. Trade 7 (2022). https://doi.org/10.1186/s41072-022-00124-7

  3. Carvalho, F., Miranda Müller Drumond Casseres, E., Poggio, M., Nogueira, T., Fonte, C., Ken Wei, H., Portugal Pereira, J., Rochedo, P., Szklo, Al., Schaeffer, R.: Prospects for carbon-neutral maritime fuels production in Brazil. J. Clean. Prod. 326, 129385 (2021). https://doi.org/10.1016/j.jclepro.2021.129385

  4. Yakovlieva, A., Boichenko, S.: Energy efficient renewable feedstock for alternative motor fuels production: solutions for Ukraine. Stud. Syst. Decis. Control 298, 247–259 (2020). https://doi.org/10.1007/978-3-030-48583-2_16

    Article  Google Scholar 

  5. Huang, J., Fan, H., Xu, X., Liu, Z.: Life cycle greenhouse gas emission assessment for using alternative marine fuels: a Very Large Crude Carrier (VLCC) case study. J. Marine Sci. Eng. 10, 1969 (2022). https://doi.org/10.3390/jmse10121969

    Article  Google Scholar 

  6. Heine, D., GGde, S., Dominioni, G.: Unilaterally removing indirect subsidies for maritime fuel. SSRN Electron. J. (2014). https://doi.org/10.2139/ssrn.2512747

  7. Livaniou, S., Chatzistelios, G., Lyridis, D., Bellos, E.: LNG vs. MDO in Marine Fuel Emissions Tracking. Sustainability 14, 3860 (2022). https://doi.org/10.3390/su14073860.

  8. Md Moshiul, A., Mohammad, R., Hira, FA., Maarop, N.: Alternative marine fuel research advances and future trends: a bibliometric knowledge mapping approach. Sustainability 14 (2022). https://doi.org/10.3390/su14094947

  9. Seo, Y., Kim, J., Park, E., Lee, J., Cho, M., Han, S.: Analysis of energy consumption of novel re-liquefaction system integrated with Fuel Supply System (FSS) for LPG-Fuelled LPG carrier to conventional systems. Energies 15, 9384 (2022). https://doi.org/10.3390/en15249384

    Article  Google Scholar 

  10. Nerheim, A.R., Æsøy, V., Holmeset, F.T.: Hydrogen as a maritime fuel-can experiences with LNG be transferred to hydrogen systems? J. Marine Sci. Eng. 9, 743 (2021). https://doi.org/10.3390/jmse9070743

    Article  Google Scholar 

  11. Pekşen, D.A., G.: Application of Alternative Maritime Power (AMP) supply to cruise port. J. ETA Marit. Sci. 6, 307–318 (2018). https://doi.org/10.5505/jems.2018.15870

    Article  Google Scholar 

  12. Mallouppas, G., Ioannou, C., Yfantis, E.: A review of the latest trends in the use of green ammonia as an energy carrier in maritime industry. Energies 15, 1453 (2022). https://doi.org/10.3390/en15041453

    Article  Google Scholar 

  13. Benet, Á., Villalba-Herreros, A., d’Amore-Domenech, R., Leo, T.J.: Knowledge gaps in fuel cell-based maritime hybrid power plants and alternative fuels. J. Power. Sources 548, 232066 (2022). https://doi.org/10.1016/j.jpowsour.2022.232066

    Article  Google Scholar 

  14. Christodoulou, A., Cullinane, K.: Potential alternative fuel pathways for compliance with the ‘FuelEU Maritime Initiative.’ Transp. Res. Part D: Transp. Environ. 112, 103492 (2022). https://doi.org/10.1016/j.trd.2022.103492

    Article  Google Scholar 

  15. Barberi, S., Campisi, T., Neduzha, L.: The role of cold ironing in maritime transport emissions. In: AIP Conference Proceedings, vol. 2611, pp. 060013 (2022). https://doi.org/10.1063/5.0119881

  16. Wang, Q., Zhang, H., Huang, J., Zhang, P.: The use of alternative fuels for maritime decarbonization: special marine environmental risks and solutions from an international law perspective. Front. Mar. Sci. 9 (2023). https://doi.org/10.3389/fmars.2022.1082453

  17. Burmaka, I., Vorokhobin I., Melnyk, O., Burmaka, O., Sagin, S.: Method of prompt evasive maneuver selection to alter ship's course or speed. Trans. Marit. Sci. 11(1) (2022). https://doi.org/10.7225/toms.v11.n01.w01.

  18. Onyshchenko S., Melnyk O.: Probabilistic assessment method of hydrometeorological conditions and their impact on the efficiency of ship operation. J. Eng. Sci. Technol. Rev. 14 (6), 132–136 (2021). https://doi.org/10.25103/jestr.146.15

  19. Onyshchenko, S., Melnyk, O.: Efficiency of ship operation in transportation of oversized and heavy cargo by optimizing the speed mode considering the impact of weather conditions. Transp. Telecommun. J. 23(1), 73–80 (2022). https://doi.org/10.2478/ttj-2022-0007

    Article  Google Scholar 

  20. Melnyk, O., Bychkovsky, Y., Voloshyn, A.: Maritime situational awareness as a key measure for safe ship operation. Sci. J. Sil. Univ. Technol. 114, 91–101 (2022). ISSN: 0209-3324. https://doi.org/10.20858/sjsutst.2022.114.8

  21. Melnyk, O., Onyshchenko, S.: Ensuring safety of navigation in the aspect of reducing environmental impact. In: ISEM 2021 LNNS, vol. 463, pp. 1–9 (2022). https://doi.org/10.1007/978-3-031-03877-8_9

  22. Onishchenko, O., Golikov, V., Melnyk, O., Onyshchenko, S., Obertiur, K.: Technical and operational measures to reduce greenhouse gas emissions and improve the environmental and energy efficiency of ships. Sci. J. Sil. Univ. Technol. 116, 223–235 (2022). https://doi.org/10.20858/sjsutst.2022.116.14

  23. Melnyk, O., Onishchenko, O., Onyshchenko, S., Voloshyn, A., Kalinichenko, Y., Rossomakha, O., Naleva, G., Rossomakha, O.: Autonomous ships concept and mathematical models application in their steering process control. TransNav, Int. J. Marine Navig. Saf. Sea Transp. 16(3), 553–559 (2022). https://doi.org/10.12716/1001.16.03.18

    Article  Google Scholar 

  24. Melnyk, O., Onyshchenko, S.: Navigational safety assessment based on Markov-model approach. Sci. J. Marit. Res. 36(2), 328–337 (2022). https://doi.org/ https://doi.org/10.31217/p.36.2.16

  25. Melnyk, O., Onyshchenko, S., Onishchenko O., Lohinov O., Ocheretna V.: Integral approach to vulnerability assessment of ship’s critical equipment and systems. Trans. Marit. Sci. Split, Croatia 12(1) (2023)

    Google Scholar 

  26. Melnyk, O., Onyshchenko, S., Koryakin, K.: Nature and origin of major security concerns and potential threats to the shipping industry. Sci. J. Sil. Univ. Technol. Ser. Transp. 113, 145–153 (2021). ISSN: 0209-3324. https://doi.org/10.20858/sjsutst.2021.113.11

  27. Bushuyev, S., Onyshchenko, S., Bushuyeva, N., Bondar, A.: Modelling projects portfolio structure dynamics of the organization development with a resistance of information entropy. In: International Scientific and Technical Conference on Computer Sciences and Information Technologies, vol. 2, pp. 293–298 (2021). https://doi.org/10.1109/CSIT52700.2021.9648713

  28. Bushuyev, S., Bushuieva, V., Onyshchenko, S., Bondar, A.: Modeling the dynamics of information panic in society. COVID-19 case. In: CEUR Workshop Proceedings, vol. 2864, pp. 400–408 (2021)

    Google Scholar 

  29. Onishchenko, O., Shumilova, K., Volyanskyy, S., Volyanskaya, Y., Volianskyi, Y.: Ensuring cyber resilience of ship information systems. TransNav 16(1), 43–50 (2022). https://doi.org/10.12716/1001.16.01.04

    Article  Google Scholar 

  30. Melnyk, O., Onishchenko, O., Onyshchenko, S., Golikov, V., Sapiha, V., Shcherbina, O., Andrievska, V.: Study of environmental efficiency of ship operation in terms of freight transportation effectiveness provision. TransNav Int. J. Marine Navig. Saf. Sea Transp. 16(4), 723–722 (2022). https://doi.org/10.12716/1001.16.04.14

  31. Melnyk, O., Onyshchenko, S., Onishchenko, O., Shumylo, O., Voloshyn, A., Koskina, Y., Volianska, Y.: Review of ship information security risks and safety of maritime transportation issues. TransNav, Int. J. Marine Navig. Saf. Sea Transp. 16(4), 717–722 (2022). https://doi.org/10.12716/1001.16.04.13

    Article  Google Scholar 

  32. Drozhzhyn, O., Koskina, Y., Tykhonina, I.: “Liner shipping”: the evolution of the concept. Pomorstvo 35(2), 365–371 (2021)

    Article  Google Scholar 

  33. Drozhzhyn, O., Koskina, Y.: The model of container feeder line organization focused on the nature and parameters of external container flows. Commun. Sci. Lett. Univ. Žilina 23(2), A94–A102 (2021)

    Google Scholar 

  34. Malaksiano, N.: On the stability of economic indicators of complex port equipment usage. Actual Probl. Econ. 138(12), 226–233 (2012)

    Google Scholar 

  35. Lapkina, I., Malaksiano, M., Malaksiano, M.: Optimization of the structure of sea port equipment fleet under unbalanced load. Actual Probl. Econ. 183(9), 364–371 (2016)

    Google Scholar 

  36. Ship fuel of the future. Comparison and prospect. https://sudostroenie.info/novosti/23327.html

  37. Alternative fuels and technologies for greener shipping (2018) DNV GL. Summary of an assessment of selected alternative fuels and technologies (2018). https://www.dnv.com

  38. Maritime Safety Agency: Update on potential of biofuels in shipping, EMSA, Lisbon (2022). https://www.emsa.europa.eu/publications/reports/item/4834-update-on-potential-of-biofuels-for-shipping.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksiy Melnyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melnyk, O. et al. (2024). Implementation Research of Alternative Fuels and Technologies in Maritime Transport. In: Boichenko, S., Zaporozhets, A., Yakovlieva, A., Shkilniuk, I. (eds) Modern Technologies in Energy and Transport. Studies in Systems, Decision and Control, vol 510. Springer, Cham. https://doi.org/10.1007/978-3-031-44351-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44351-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44350-3

  • Online ISBN: 978-3-031-44351-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics