Skip to main content

Bayesian Uncertainty Estimation in Landmark Localization Using Convolutional Gaussian Processes

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023)

Abstract

Landmark localization is an important step in image analysis, where the clinical definition of a landmark can be ambiguous, leading to a practical necessity for model uncertainty quantification that is rigorous and trustworthy. In this paper, we present the first Bayesian framework using Gaussian processes to capture both dataset-level landmark ambiguity and sample-level model uncertainty. Our proposed two-stage approach includes a deep learning based U-Net for coarse predictions, followed by a convolutional Gaussian process (CGP) for fine-grained predictions with uncertainty estimates, learning covariance matrices rather than using a pre-defined covariance matrix. Our Bayesian approach yields a more rigorous quantification of uncertainty compared to deep learning-based uncertainty estimation techniques, whilst still achieving comparable localization accuracy. Our results suggest that CGPs can better model the inherent uncertainties in landmark localization tasks and provide more reliable confidence estimates, making it a promising direction for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez, M.A., Lawrence, N.D.: Computationally efficient convolved multiple output Gaussian processes. J. Mach. Learn. Res. 12, 1459–1500 (2011)

    MathSciNet  Google Scholar 

  2. Beichel, R., Bischof, H., Leberl, F., Sonka, M.: Robust active appearance models and their application to medical image analysis. IEEE Trans. Med. Imaging 24(9), 1151–1169 (2005)

    Article  Google Scholar 

  3. Branch, M.A., Coleman, T.F., Li, Y.: A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21(1), 1–23 (1999)

    Article  MathSciNet  Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  5. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings ICML, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  6. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inf. 3(2), 119–131 (2016)

    Article  Google Scholar 

  7. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  8. Jiang, Y., Li, Y., Wang, X., Tao, Y., Lin, J., Lin, H.: CephalFormer: incorporating global structure constraint into visual features for general cephalometric landmark detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Proceedings MICCAI, pp. 227–237. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_22

  9. Johnson, H.J., Christensen, G.E.: Consistent landmark and intensity-based image registration. IEEE Trans. Med. Imaging 21(5), 450–461 (2002)

    Article  Google Scholar 

  10. Journel, A.G., Huijbregts, C.J.: Mining geostatistics (1976)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Lee, J.H., Yu, H.J., Kim, M.J., Kim, J.W., Choi, J.: Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health 20(1), 1–10 (2020)

    Google Scholar 

  13. Leibfried, F., Dutordoir, V., John, S., Durrande, N.: A tutorial on sparse Gaussian processes and variational inference. arXiv preprint arXiv:2012.13962 (2020)

  14. Lindner, C., Wang, C.W., Huang, C.T., Li, C.H., Chang, S.W., Cootes, T.F.: Fully automatic system for accurate localisation and analysis of cephalometric landmarks in lateral cephalograms. Sci. Rep. 6(1), 1–10 (2016)

    Article  Google Scholar 

  15. Murphy, K., et al.: Semi-automatic construction of reference standards for evaluation of image registration. Med. Image Anal. 15(1), 71–84 (2011)

    Article  Google Scholar 

  16. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019)

    Article  Google Scholar 

  17. Payer, C., Urschler, M., Bischof, H., Štern, D.: Uncertainty estimation in landmark localization based on Gaussian heatmaps. In: Sudre, C.H., et al. (eds.) UNSURE/GRAIL -2020. LNCS, vol. 12443, pp. 42–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60365-6_5

    Chapter  Google Scholar 

  18. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Schöbs, L., Swift, A.J., Lu, H.: Uncertainty estimation for heatmap-based landmark localization. IEEE Trans. Med Imaging, 1 (2022)

    Google Scholar 

  21. Thaler, F., Payer, C., Urschler, M., Štern, D., et al.: Modeling annotation uncertainty with Gaussian heatmaps in landmark localization. J. Mach. Learn. Biomed. Imaging 1, 1–10 (2021)

    Article  Google Scholar 

  22. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  23. Wang, C.W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)

    Article  Google Scholar 

  24. Van der Wilk, M., Rasmussen, C.E., Hensman, J.: Convolutional Gaussian processes. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: An attention-guided deep regression model for landmark detection in cephalograms. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 540–548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_60

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by EPSRC (2274702) and the Welcome Trust (215799/Z/19/Z and 205188/Z/16/Z). Thomas M. McDonald would like to thank the Department of Computer Science at The University of Manchester for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Schobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schobs, L., McDonald, T.M., Lu, H. (2023). Bayesian Uncertainty Estimation in Landmark Localization Using Convolutional Gaussian Processes. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. Lecture Notes in Computer Science, vol 14291. Springer, Cham. https://doi.org/10.1007/978-3-031-44336-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44336-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44335-0

  • Online ISBN: 978-3-031-44336-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics