Skip to main content

Feature-Based Pipeline for Improving Unsupervised Anomaly Segmentation on Medical Images

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2023)

Abstract

Unsupervised methods for anomaly segmentation are promising for computer-aided diagnosis since they can increase the robustness of medical systems and do not require large annotated datasets. In this work, we propose a simple yet effective two-stage pipeline for improving the performance of existing anomaly segmentation methods. The first stage is used for better anomaly localization and false positive rate reduction. For this stage, we propose the PatchCore3D method, which is based on the PatchCore algorithm and a backbone, pre-trained on 3D medical images. Any existing anomaly segmentation method can be used at the second stage for the precise anomaly segmentation in the region suggested by PatchCore3D. We evaluate PatchCore3D and the proposed pipelines in combination with six top-performing anomaly segmentation methods of different types. We use brain MRI datasets, testing healthy subjects against subjects with brain tumors. Using PatchCore3D pipeline with every considered anomaly segmentation method increases segmentation AUROC almost twice by better anomaly localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/2na-97/CGV_MOOD2022/.

  2. 2.

    http://brain-development.org/ixi-dataset/.

  3. 3.

    https://github.com/Duplums/yAwareContrastiveLearning/.

References

  1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R., et al.: Geometric approximation via coresets. Comb. Comput. Geom. 52(1), 1–30 (2005)

    Google Scholar 

  2. Baid, U., et al.: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  4. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021)

    Article  Google Scholar 

  5. Behrendt, F., Bengs, M., Rogge, F., Krüger, J., Opfer, R., Schlaefer, A.: Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with impured training data. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI). pp. 1–4. IEEE (2022)

    Google Scholar 

  6. Bengs, M., Behrendt, F., Krüger, J., Opfer, R., Schlaefer, A.: 3-Dimensional deep learning with spatial erasing for unsupervised anomaly segmentation in brain MRI. arXiv preprint arXiv:2109.06540 (2021)

  7. Bercea, C.I., Wiestler, B., Rueckert, D., Schnabel, J.A.: Reversing the abnormal: Pseudo-healthy generative networks for anomaly detection. arXiv preprint arXiv:2303.08452 (2023)

  8. Chan, H.P., Hadjiiski, L.M., Samala, R.K.: Computer-aided diagnosis in the era of deep learning. Med. Phys. 47(5), e218–e227 (2020)

    Article  Google Scholar 

  9. Dufumier, B., et al.: Contrastive learning with continuous proxy meta-data for 3D MRI classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 58–68. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_6

    Chapter  Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708 (2017)

    Google Scholar 

  11. Iqbal, H., Khalid, U., Hua, J., Chen, C.: Unsupervised anomaly detection in medical images using masked diffusion model. arXiv preprint arXiv:2305.19867 (2023)

  12. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. IEEE Trans. Big Data 7(3), 535–547 (2019)

    Article  Google Scholar 

  13. Kascenas, A., Young, R., Jensen, B.S., Pugeault, N., O’Neil, A.Q.: Anomaly Detection via Context and Local Feature Matching. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  14. Marimont, S.N., Tarroni, G.: Anomaly detection through latent space restoration using vector quantized variational autoencoders. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1764–1767. IEEE (2021)

    Google Scholar 

  15. Meissen, F., Kaissis, G., Rueckert, D.: Challenging current semi-supervised anomaly segmentation methods for brain MRI. In: International MICCAI brainlesion workshop, pp. 63–74. Springer (2022). https://doi.org/10.1007/978-3-031-08999-2_5

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  17. Naval Marimont, S., Tarroni, G.: Implicit Field Learning for Unsupervised Anomaly Detection in Medical Images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 189–198. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_18

    Chapter  Google Scholar 

  18. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapping 31(5), 798–819 (2010)

    Article  Google Scholar 

  19. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2022)

    Google Scholar 

  20. Salehi, M., Sadjadi, N., Baselizadeh, S., Rohban, M.H., Rabiee, H.R.: Multiresolution knowledge distillation for anomaly detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14902–14912 (2021)

    Google Scholar 

  21. Schell, M., et al.: Automated brain extraction of multi-sequence MRI using artificial neural networks. European Congress of Radiology-ECR 2019 (2019)

    Google Scholar 

  22. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  23. Silva-Rodríguez, J., Naranjo, V., Dolz, J.: Constrained unsupervised anomaly segmentation. arXiv preprint arXiv:2203.01671 (2022)

  24. Simarro Viana, J., de la Rosa, E., Vande Vyvere, T., Robben, D., Sima, D.M., et al.: Unsupervised 3d brain anomaly detection. In: International MICCAI Brainlesion Workshop, pp. 133–142. Springer (2020)

    Google Scholar 

  25. Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B.: Detecting outliers with foreign patch interpolation. arXiv preprint arXiv:2011.04197 (2020)

  26. Wyatt, J., Leach, A., Schmon, S.M., Willcocks, C.G.: Anoddpm: Anomaly detection with denoising diffusion probabilistic models using simplex noise. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 650–656 (2022)

    Google Scholar 

  27. You, S., Tezcan, K.C., Chen, X., Konukoglu, E.: Unsupervised lesion detection via image restoration with a normative prior. In: International Conference on Medical Imaging with Deep Learning, pp. 540–556. PMLR (2019)

    Google Scholar 

  28. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  29. Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis. Med. Image Anal. 67, 101840 (2021)

    Article  Google Scholar 

  30. Zimmerer, D., et al.: Mood 2020: a public benchmark for out-of-distribution detection and localization on medical images. IEEE Trans. Med. Imaging 41(10), 2728–2738 (2022)

    Article  Google Scholar 

  31. Zimmerer, D., Isensee, F., Petersen, J., Kohl, S., Maier-Hein, K.: Unsupervised Anomaly Localization Using Variational Auto-Encoders. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 289–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_32

    Chapter  Google Scholar 

  32. Zimmerer, D., et al.: Medical out-of-distribution analysis challenge (2022). https://doi.org/10.5281/zenodo.6362313

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Frolova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frolova, D., Katrutsa, A., Oseledets, I. (2023). Feature-Based Pipeline for Improving Unsupervised Anomaly Segmentation on Medical Images. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2023. Lecture Notes in Computer Science, vol 14291. Springer, Cham. https://doi.org/10.1007/978-3-031-44336-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44336-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44335-0

  • Online ISBN: 978-3-031-44336-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics