Skip to main content

Learning-Based Approaches to Predictive Monitoring with Conformal Statistical Guarantees

  • Conference paper
  • First Online:
Runtime Verification (RV 2023)

Abstract

This tutorial focuses on efficient methods to predictive monitoring (PM), the problem of detecting at runtime future violations of a given requirement from the current state of a system. While performing model checking at runtime would offer a precise solution to the PM problem, it is generally computationally expensive. To address this scalability issue, several lightweight approaches based on machine learning have recently been proposed. These approaches work by learning an approximate yet efficient surrogate (deep learning) model of the expensive model checker. A key challenge remains to ensure reliable predictions, especially in safety-critical applications.

We review our recent work on predictive monitoring, one of the first to propose learning-based approximations for CPS verification of temporal logic specifications and the first in this context to apply conformal prediction (CP) for rigorous uncertainty quantification. These CP-based uncertainty estimators offer statistical guarantees regarding the generalization error of the learning model, and they can be used to determine unreliable predictions that should be rejected. In this tutorial, we present a general and comprehensive framework summarizing our approach to the predictive monitoring of CPSs, examining in detail several variants determined by three main dimensions: system dynamics (deterministic, non-deterministic, stochastic), state observability, and semantics of requirements’ satisfaction (Boolean or quantitative).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The only assumption is exchangeability, a weaker version of the independent and identically distributed assumption. A collection of N values is exchangeable if the N! different orderings are equally likely, i.e. have the same joint probability.

  2. 2.

    https://cps-vo.org/group/ARCH/FriendlyCompetition.

  3. 3.

    In case of partial observability we restrict our analysis to deterministic systems.

  4. 4.

    Feasibility of state reconstruction is affected by the time lag and the sequence length. Our focus is to derive the best predictions for fixed lag and sequence length, not to fine-tune these to improve identifiability.

  5. 5.

    In the limit of infinite sample size, the empirical approximation approaches the true distribution.

  6. 6.

    Ties can be resolved by imposing an ordering over the classes.

  7. 7.

    If f outputs more than two quantiles, \(\hat{q}_{\varepsilon _{lo}}(x)\) and \(\hat{q}_{\varepsilon _{hi}}(x)\) denote the predicted quantiles associated respectively with the lowest and highest associated significance level.

References

  1. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)

    Google Scholar 

  2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_21

    Chapter  MATH  Google Scholar 

  3. Babaee, R., Ganesh, V., Sedwards, S.: Accelerated learning of predictive runtime monitors for rare failure. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 111–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_7

    Chapter  Google Scholar 

  4. Babaee, R., Gurfinkel, A., Fischmeister, S.: Predictive run-time verification of discrete-time reachability properties in black-box systems using trace-level abstraction and statistical learning. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 187–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_11

    Chapter  Google Scholar 

  5. Badings, T.S., Jansen, N., Junges, S., Stoelinga, M., Volk, M.: Sampling-based verification of CTMCs with uncertain rates. In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13372, pp. 26–47. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13188-2_2

    Chapter  MATH  Google Scholar 

  6. Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reachability for linear systems. In: Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control, pp. 173–178 (2017)

    Google Scholar 

  7. Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified simplex design. In: Real-Time Systems Symposium (RTSS), 2014 IEEE, pp. 138–148. IEEE (2014)

    Google Scholar 

  8. Balasubramanian, V., Ho, S.S., Vovk, V.: Conformal Prediction for Reliable Machine Learning: Theory, Adaptations and Applications. Newnes, Oxford (2014)

    MATH  Google Scholar 

  9. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5

    Chapter  Google Scholar 

  10. Benvenuti, L., et al.: Reachability computation for hybrid systems with Ariadne. IFAC Proc. Volumes 41(2), 8960–8965 (2008)

    Article  Google Scholar 

  11. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a toolbox for set-based reachability. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, pp. 39–44 (2019)

    Google Scholar 

  12. Bortolussi, L., Cairoli, F., Carbone, G., Pulcini, P.: Stochastic variational smoothed model checking. arXiv preprint arXiv:2205.05398 (2022)

  13. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predictive monitoring. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 129–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_8

    Chapter  Google Scholar 

  14. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predictive monitoring and a comparison of frequentist and Bayesian approaches. Int. J. Softw. Tools Technol. Transfer 23(4), 615–640 (2021)

    Article  Google Scholar 

  15. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.: On reachability for hybrid automata over bounded time. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 416–427. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_33

    Chapter  MATH  Google Scholar 

  17. Cairoli, F., Bortolussi, L., Paoletti, N.: Neural predictive monitoring under partial observability. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 121–141. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_7

    Chapter  Google Scholar 

  18. Cairoli, F., Paoletti, N., Bortolussi, L.: Neural predictive monitoring for collective adaptive systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13703, pp. 30–46. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19759-8_3

    Chapter  Google Scholar 

  19. Cairoli, F., Paoletti, N., Bortolussi, L.: Conformal quantitative predictive monitoring of STL requirements for stochastic processes. In: Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control, pp. 1–11 (2023)

    Google Scholar 

  20. Cauchois, M., Gupta, S., Ali, A., Duchi, J.C.: Robust validation: confident predictions even when distributions shift. arXiv preprint arXiv:2008.04267 (2020)

  21. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise parameter synthesis for stochastic biochemical systems. Acta Informatica 54, 589–623 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, H., Lin, S., Smolka, S.A., Paoletti, N.: An STL-based formulation of resilience in cyber-physical systems. In: Bogomolov, S., Parker, D. (eds.) FORMATS 2022. LNCS, vol. 13465, pp. 117–135. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15839-1_7

    Chapter  MATH  Google Scholar 

  23. Chen, X., Sankaranarayanan, S.: Model predictive real-time monitoring of linear systems. In: Real-Time Systems Symposium (RTSS), 2017 IEEE, pp. 297–306. IEEE (2017)

    Google Scholar 

  24. Chou, Y., Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring of vehicle models using Bayesian estimation and reachability analysis. In: International Conference on Intelligent Robots and Systems (IROS) (2020)

    Google Scholar 

  25. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust online monitoring of signal temporal logic. Formal Meth. Syst. Des. 51(1), 5–30 (2017)

    Article  MATH  Google Scholar 

  26. Djeridane, B., Lygeros, J.: Neural approximation of PDE solutions: an application to reachability computations. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 3034–3039. IEEE (2006)

    Google Scholar 

  27. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_19

    Chapter  Google Scholar 

  28. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17

    Chapter  Google Scholar 

  29. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  30. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5

    Chapter  Google Scholar 

  31. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_17

    Chapter  MATH  Google Scholar 

  32. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  33. Gammerman, A., Vovk, V.: Hedging predictions in machine learning. Comput. J. 50(2), 151–163 (2007)

    Article  Google Scholar 

  34. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic model checker storm. Int. J. Softw. Tools Technol. Transfer 24, 589–610 (2021)

    Article  Google Scholar 

  35. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp. 373–382 (1995)

    Google Scholar 

  36. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety properties of hybrid systems with neural network controllers. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, pp. 169–178 (2019)

    Google Scholar 

  37. Johnson, T.T., Bak, S., Caccamo, M., Sha, L.: Real-time reachability for verified simplex design. ACM Trans. Embed. Comput. Syst. (TECS) 15(2), 1–27 (2016)

    Article  Google Scholar 

  38. Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated regression. In: International Conference on Machine Learning, pp. 2796–2804. PMLR (2018)

    Google Scholar 

  39. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  40. Lindemann, L., Qin, X., Deshmukh, J.V., Pappas, G.J.: Conformal prediction for STL runtime verification. In: Proceedings of the ACM/IEEE 14th International Conference on Cyber-Physical Systems (with CPS-IoT Week 2023), pp. 142–153 (2023)

    Google Scholar 

  41. Ma, M., Stankovic, J., Bartocci, E., Feng, L.: Predictive monitoring with logic-calibrated uncertainty for cyber-physical systems. ACM Trans. Embed. Comput. Syst. (TECS) 20(5s), 1–25 (2021)

    Article  Google Scholar 

  42. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  43. Muthali, A., et al.: Multi-agent reachability calibration with conformal prediction. arXiv preprint arXiv:2304.00432 (2023)

  44. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_34

    Chapter  Google Scholar 

  45. Papadopoulos, H.: Inductive conformal prediction: theory and application to neural networks. In: Tools in Artificial Intelligence. InTech (2008)

    Google Scholar 

  46. Papadopoulos, H., Haralambous, H.: Reliable prediction intervals with regression neural networks. Neural Netw.: J. Int. Neural Net. Soc. 24(8), 842–51 (2011)

    Article  Google Scholar 

  47. Papadopoulos, H., Vovk, V., Gammerman, A.: Regression conformal prediction with nearest neighbours. J. Artif. Intell. Res. 40, 815–840 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural state classification for hybrid systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 422–440. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_25

    Chapter  Google Scholar 

  49. Qin, X., Deshmukh, J.V.: Predictive monitoring for signal temporal logic with probabilistic guarantees. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, pp. 266–267. ACM (2019)

    Google Scholar 

  50. Qin, X., Deshmukh, J.V.: Clairvoyant monitoring for signal temporal logic. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 178–195. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8_11

    Chapter  Google Scholar 

  51. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. vol. 1. MIT Press, Cambridge (2006)

    Google Scholar 

  52. Rodionova, A., Lindemann, L., Morari, M., Pappas, G.J.: Time-robust control for STL specifications. In: 2021 60th IEEE Conference on Decision and Control (CDC), pp. 572–579. IEEE (2021)

    Google Scholar 

  53. Romano, Y., Patterson, E., Candes, E.: Conformalized quantile regression. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  54. Royo, V.R., Fridovich-Keil, D., Herbert, S., Tomlin, C.J.: Classification-based approximate reachability with guarantees applied to safe trajectory tracking. arXiv preprint arXiv:1803.03237 (2018)

  55. Sauter, G., Dierks, H., Fränzle, M., Hansen, M.R.: Lightweight hybrid model checking facilitating online prediction of temporal properties. In: Proceedings of the 21st Nordic Workshop on Programming Theory, pp. 20–22 (2009)

    Google Scholar 

  56. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ Library of state set representations for hybrid systems reachability analysis. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_20

    Chapter  Google Scholar 

  57. Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach. Learn. Res. 9, 371–421 (2008)

    MathSciNet  MATH  Google Scholar 

  58. Stankeviciute, K., Alaa, A.M., van der Schaar, M.: Conformal time-series forecasting. In: Advances in Neural Information Processing Systems, vol. 34, pp. 6216–6228 (2021)

    Google Scholar 

  59. Tibshirani, R.J., Foygel Barber, R., Candes, E., Ramdas, A.: Conformal prediction under covariate shift. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  60. Toccaceli, P., Gammerman, A.: Combination of inductive Mondrian conformal predictors. Mach. Learn. 108(3), 489–510 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  61. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, Cham (2005). https://doi.org/10.1007/978-3-031-06649-8

    Book  MATH  Google Scholar 

  62. Yel, E., et al.: Assured runtime monitoring and planning: toward verification of neural networks for safe autonomous operations. IEEE Robot. Autom. Mag. 27(2), 102–116 (2020)

    Article  Google Scholar 

  63. Yoon, H., Chou, Y., Chen, X., Frew, E., Sankaranarayanan, S.: Predictive runtime monitoring for linear stochastic systems and applications to geofence enforcement for UAVs. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 349–367. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_20

    Chapter  Google Scholar 

  64. Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring for mobile robots using logic-based Bayesian intent inference. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8565–8571. IEEE (2021)

    Google Scholar 

  65. Yu, X., Dong, W., Yin, X., Li, S.: Model predictive monitoring of dynamic systems for signal temporal logic specifications. arXiv preprint arXiv:2209.12493 (2022)

  66. Zaffran, M., Féron, O., Goude, Y., Josse, J., Dieuleveut, A.: Adaptive conformal predictions for time series. In: International Conference on Machine Learning, pp. 25834–25866. PMLR (2022)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the PRIN project “SEDUCE” n. 2017TWRCNB, by the “REXASI-PRO” H-EU project, call HORIZON-CL4-2021-HUMAN-01-01, Grant agreement ID: 101070028 and by the PNRR project iNEST (Interconnected North-Est Innovation Ecosystem) funded by the European Union Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione 4 Componente 2, Investimento 1.5 - D.D. 1058 23/06/2022, ECS_00000043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cairoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cairoli, F., Bortolussi, L., Paoletti, N. (2023). Learning-Based Approaches to Predictive Monitoring with Conformal Statistical Guarantees. In: Katsaros, P., Nenzi, L. (eds) Runtime Verification. RV 2023. Lecture Notes in Computer Science, vol 14245. Springer, Cham. https://doi.org/10.1007/978-3-031-44267-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44267-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44266-7

  • Online ISBN: 978-3-031-44267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics