Skip to main content

Comprehensive Spatial Lipidomics of Formalin-Fixed Paraffin-Embedded Tissue Guided by Mass Spectrometry-Imaging

  • Chapter
  • First Online:
A Practical Guide to Metabolomics Applications in Health and Disease

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 276 Accesses

Abstract

This chapter aims to provide a practical guide to performing comprehensive spatial lipidomics of formalin-fixed paraffin-embedded (FFPE) tissue guided by Matrix Assisted Laser Desorption/Ionisation-mass spectrometry-imaging (MALDI-MSI), presenting an overview of the key methodological aspects as well as the type of data that can be obtained when using this approach. Moreover, it also aims to highlight the more extensive and reliable lipid identifications that can be obtained when an additional trapped ion mobility spectrometry (TIMS) dimension is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: challenges and opportunities for metabolomics and lipidomics. Mass Spectrom Rev. 2022;41:722–65.

    Article  CAS  PubMed  Google Scholar 

  2. Sgobba E, Daguerre Y, Giampà M. Unravel the local complexity of biological environments by MALDI mass spectrometry imaging. Int J Mol Sci. 2021;22:12393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salita T, Rustam YH, Mouradov D, Sieber OM, Reid GE. Reprogrammed lipid metabolism and the lipid-associated hallmarks of colorectal cancer. Cancers. 2022;14:3714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dewez F, et al. MS imaging-guided microproteomics for spatial omics on a single instrument. Proteomics. 2020;20:e1900369.

    Article  PubMed  Google Scholar 

  5. Ogrinc Potočnik N, Porta T, Becker M, Heeren RMA, Ellis SR. Use of advantageous, volatile matrices enabled by next-generation high-speed matrix-assisted laser desorption/ionization time-of-flight imaging employing a scanning laser beam. Rapid Commun Mass Spectrom. 2015;29:2195–203.

    Article  PubMed  Google Scholar 

  6. Swales JG, et al. Spatial quantitation of drugs in tissues using liquid extraction surface analysis mass spectrometry imaging. Sci Rep. 2016;6:37648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soltwisch J, et al. MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument for rapid mass spectrometry imaging and ion mobility separation of complex lipid profiles. Anal Chem. 2020;92:8697–703.

    Article  CAS  PubMed  Google Scholar 

  8. Spraggins JM, et al. High-performance molecular imaging with MALDI trapped ion-mobility time-of-flight (timsTOF) mass spectrometry. Anal Chem. 2019;91:14552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith A, et al. Molecular signatures of medullary thyroid carcinoma by matrix-assisted laser desorption/ionisation mass spectrometry imaging. J Proteome. 2019;191:114–23.

    Article  CAS  Google Scholar 

  10. Metz B, et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem. 2004;279:6235–43.

    Article  CAS  PubMed  Google Scholar 

  11. Denti V, et al. Antigen retrieval and its effect on the MALDI-MSI of lipids in formalin-fixed paraffin-embedded tissue. J Am Soc Mass Spectrom. 2020;31:1619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Denti V, et al. Reproducible lipid alterations in patient-derived breast cancer xenograft FFPE tissue identified with MALDI MSI for pre-clinical and clinical application. Meta. 2021;11:577.

    CAS  Google Scholar 

  13. Denti V, et al. Lipidomic typing of colorectal cancer tissue containing tumour-infiltrating lymphocytes by MALDI mass spectrometry imaging. Meta. 2021;11:599.

    CAS  Google Scholar 

  14. Gil-de-Gómez L, et al. A phosphatidylinositol species acutely generated by activated macrophages regulates innate immune responses. J Immunol. 2013;190:5169–77.

    Article  PubMed  Google Scholar 

  15. Smith CM, Li A, Krishnamurthy N, Lemmon MA. Phosphatidylserine binding directly regulates TIM-3 function. Biochem J. 2021;478:3331–49.

    Article  CAS  PubMed  Google Scholar 

  16. Buck A, et al. High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J Pathol. 2015;237:123–32.

    Article  CAS  PubMed  Google Scholar 

  17. Barré FPY, et al. Enhanced sensitivity using MALDI imaging coupled with laser postionization (MALDI-2) for pharmaceutical research. Anal Chem. 2019;91:10840–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith A, Piga I, Denti V, Chinello C, Magni F. Elaboration pipeline for the management of MALDI-MS imaging datasets. Methods Mol Biol. 2021;2361:129–42.

    Article  CAS  PubMed  Google Scholar 

  19. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Strohalm M, Hassman M, Košata B, Kodíček M. mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom. 2008;22:905–8. https://doi.org/10.1002/rcm.3444.

    Article  CAS  PubMed  Google Scholar 

  21. Andersen MK, et al. Simultaneous detection of zinc and its pathway metabolites using MALDI MS imaging of prostate tissue. Anal Chem. 2020;92:3171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mahalingam M. Laser capture microdissection: insights into methods and applications. Methods Mol Biol. 2018;1–17. https://doi.org/10.1007/978-1-4939-7558-7_1.

  23. Smirnov D, Mazin P, Osetrova M, Stekolshchikova E, Khrameeva E. The Hitchhiker’s guide to untargeted lipidomics analysis: practical guidelines. Metabolites. 2021;11:713. https://doi.org/10.3390/metabo11110713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Züllig T, Köfeler HC. High resolution mass spectrometry in lipidomics. Mass Spectrom Rev. 2021;40:162–76. https://doi.org/10.1002/mas.21627.

    Article  CAS  PubMed  Google Scholar 

  25. Fernandez-Lima F, Kaplan DA, Suetering J, Park MA. Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobil Spectrom. 2011;14:93–8. https://doi.org/10.1007/s12127-011-0067-8.

    Article  Google Scholar 

  26. Chen X, et al. Trapped ion mobility spectrometry-mass spectrometry improves the coverage and accuracy of four-dimensional untargeted lipidomics. Anal Chim Acta. 2022;1210:339886.

    Article  CAS  PubMed  Google Scholar 

  27. Vasilopoulou CG, et al. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun. 2020;11:331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goracci L, et al. Lipostar, a comprehensive platform-neutral cheminformatics tool for lipidomics. (2017) https://doi.org/10.1021/acs.analchem.7b01259.

  29. Sumner LW, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–21. https://doi.org/10.1007/s11306-007-0082-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smets T, De Keyser T, Tousseyn T, Waelkens E, De Moor B. Correspondence-aware manifold learning for microscopic and spatial omics imaging: a novel data fusion method bringing mass spectrometry imaging to a cellular resolution. Anal Chem. 2021;93:3452–60.

    Article  CAS  PubMed  Google Scholar 

  31. Ji AL, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell. 2020;182:1661–2. https://doi.org/10.1016/j.cell.2020.08.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alexandrov T. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence. Ann Rev Biomed Data Sci. 2020;3:61–87. https://doi.org/10.1146/annurev-biodatasci-011420-031537.

    Article  Google Scholar 

  33. Hériché J-K, Alexander S, Ellenberg J. Integrating imaging and omics: computational methods and challenges. Ann Rev Biomed Data Sci. 2019;2:175–97. https://doi.org/10.1146/annurev-biodatasci-080917-013328.

    Article  Google Scholar 

  34. Jirásko R, et al. Altered plasma, urine, and tissue profiles of sulfatides and sphingomyelins in patients with renal cell carcinoma. Cancers. 2022;14:4622.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang H-YJ. Matrix-assisted laser desorption/ionization-mass spectrometry imaging of lipids in the ischemic rat brain section: a practical approach. Methods Mol Biol. 2021;2306:299–311.

    Article  CAS  PubMed  Google Scholar 

  36. Dannhorn A, et al. Evaluation of formalin-fixed and FFPE tissues for spatially resolved metabolomics and drug distribution studies. Pharmaceuticals. 2022;15:1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work presented in this chapter was facilitated by Fondazione Gigi & Pupa Ferrari Onlus and Regione Lombardia: programma degli interventi per la ripresa economica: sviluppo di nuovi accordi di collaborazione con le università per la ricerca, l’innovazione e il trasferimento tecnologico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Paglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Denti, V., Piazza, M., Smith, A., Paglia, G. (2023). Comprehensive Spatial Lipidomics of Formalin-Fixed Paraffin-Embedded Tissue Guided by Mass Spectrometry-Imaging. In: Ivanisevic, J., Giera, M. (eds) A Practical Guide to Metabolomics Applications in Health and Disease. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-031-44256-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44256-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44255-1

  • Online ISBN: 978-3-031-44256-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics