Skip to main content

Boosting Multi-neuron Convex Relaxation for Neural Network Verification

  • Conference paper
  • First Online:
Static Analysis (SAS 2023)

Abstract

Formal verification of neural networks is essential for their deployment in safety-critical real-world applications, such as autonomous driving and cyber-physical controlling. Multi-neuron convex relaxation is one of the mainstream methods to improve verification precision. However, existing techniques rely on empirically selecting neuron groups before performing multi-neuron convex relaxation, which may yield redundant yet expensive convex hull computations. This paper proposes a volume approximation based approach for selecting neuron groups. We approximate the volumes of convex hulls for all group candidates, without calculating their convex hulls. The group candidates with small volumes are then selected for convex hull computation, aiming at ruling out unnecessary convex hulls with loose relaxation. We implement our approach as the neural network verification tool FaGMR, and evaluate it against state-of-the-art tools including Prima, \(\alpha , \beta \)-CROWN, and ERAN on neural networks trained by MNIST and CIFAR-10. The experimental results demonstrate that FaGMR is more efficient than these tools, yet with the same or sometimes better verification precision.

This work is supported by the National Natural Science Foundation of China (61836005), the Natural Science Foundation of Guangdong Province (2022A1515011458, 2022A1515010880), and the Shenzhen Science and Technology Innovation Program (JCYJ20210324094202008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Verified-Intelligence/alpha-beta-CROWN/tree/main/complete_verifier/exp_configs/.

  2. 2.

    https://github.com/formes20/FaGMR/blob/main/code/tf_verify/config.py.

References

  1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-integer programming formulations for trained neural networks. Math. Program. 183(1), 3–39 (2020). https://doi.org/10.1007/s10107-020-01474-5

    Article  MathSciNet  Google Scholar 

  2. Bak, S., Liu, C., Johnson, T.T.: The second international verification of neural networks competition (VNN-COMP 2021): summary and results. CoRR abs/2109.00498 (2021). https://arxiv.org/abs/2109.00498

  3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: Qhull: Quickhull algorithm for computing the convex hull. Astrophysics Source Code Library, pp. ascl-1304 (2013)

    Google Scholar 

  4. Betke, U., Henk, M.: Approximating the volume of convex bodies. Discret. Comput. Geom. 10(1), 15–21 (1993). https://doi.org/10.1007/BF02573960

    Article  MathSciNet  Google Scholar 

  5. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient verification of ReLU-based neural networks via dependency analysis. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020, pp. 3291–3299. AAAI Press (2020). https://ojs.aaai.org/index.php/AAAI/article/view/5729

  6. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Branch and bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21, 42:1–42:39 (2020). http://jmlr.org/papers/v21/19-468.html

  7. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19

    Chapter  Google Scholar 

  8. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computation and Machine Learning. MIT Press (2016). http://www.deeplearningbook.org/

  9. Goubault, E., Palumby, S., Putot, S., Rustenholz, L., Sankaranarayanan, S.: Static analysis of ReLU neural networks with tropical polyhedra. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) SAS 2021. LNCS, vol. 12913, pp. 166–190. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88806-0_8

    Chapter  Google Scholar 

  10. Gurobi Optimization: Gurobi Optimizer. http://www.gurobi.com

  11. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  12. Katz, G., et al.: The Marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

    Chapter  Google Scholar 

  13. Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.: Algorithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–404 (2021). https://doi.org/10.1561/2400000035

    Article  Google Scholar 

  14. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. CoRR abs/1706.06083 (2017). http://arxiv.org/abs/1706.06083

  15. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for provably robust neural networks. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018. Proceedings of Machine Learning Research, vol. 80, pp. 3575–3583. PMLR (2018). http://proceedings.mlr.press/v80/mirman18b.html

  16. Morgulis, N., Kreines, A., Mendelowitz, S., Weisglass, Y.: Fooling a real car with adversarial traffic signs. CoRR abs/1907.00374 (2019). http://arxiv.org/abs/1907.00374

  17. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.T.: PRIMA: general and precise neural network certification via scalable convex hull approximations. Proc. ACM Program. Lang. 6(POPL), 1–33 (2022). https://doi.org/10.1145/3498704

  18. Salman, H., Yang, G., Zhang, H., Hsieh, C., Zhang, P.: A convex relaxation barrier to tight robustness verification of neural networks. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019, pp. 9832–9842 (2019)

    Google Scholar 

  19. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron convex barrier for neural network certification. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019, pp. 15072–15083 (2019). https://proceedings.neurips.cc/paper/2019/hash/0a9fdbb17feb6ccb7ec405cfb85222c4-Abstract.html

  20. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective robustness certification. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 10825–10836 (2018). https://proceedings.neurips.cc/paper/2018/hash/f2f446980d8e971ef3da97af089481c3-Abstract.html

  21. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1–41:30 (2019). https://doi.org/10.1145/3290354

  22. Sommerville, D.M.: Introduction to the Geometry of N Dimensions. Courier Dover Publications (2020)

    Google Scholar 

  23. SRI Lab: ETH robustness analyzer for neural networks (ERAN) (2022). https://github.com/eth-sri/eran

  24. Tjandraatmadja, C., Anderson, R., Huchette, J., Ma, W., Patel, K., Vielma, J.P.: The convex relaxation barrier, revisited: tightened single-neuron relaxations for neural network verification. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/f6c2a0c4b566bc99d596e58638e342b0-Abstract.html

  25. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 6369–6379 (2018). https://proceedings.neurips.cc/paper/2018/hash/2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html

  26. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018, pp. 1599–1614. USENIX Association (2018). https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

  27. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split constraints for neural network robustness verification. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, 6–14 December 2021, Virtual, pp. 29909–29921 (2021). https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html

  28. Xu, K., et al.: Fast and complete: enabling complete neural network verification with rapid and massively parallel incomplete verifiers. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). https://openreview.net/forum?id=nVZtXBI6LNn

  29. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network robustness certification with general activation functions. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 4944–4953 (2018)

    Google Scholar 

  30. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, landscapes and horizons. IEEE Trans. Softw. Eng. 48(2), 1–36 (2022)

    Article  Google Scholar 

  31. Zhao, Z., Zhang, Y., Chen, G., Song, F., Chen, T., Liu, J.: CLEVEREST: accelerating CEGAR-based neural network verification via adversarial attacks. In: Singh, G., Urban, C. (eds.) SAS 2022. LNCS, vol. 13790, pp. 449–473. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22308-2_20

    Chapter  Google Scholar 

  32. Zheng, Y., Liu, J., Shi, X.: MpBP: verifying robustness of neural networks with multi-path bound propagation. In: Roychoudhury, A., Cadar, C., Kim, M. (eds.) Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, 14–18 November 2022, pp. 1692–1696. ACM (2022). https://doi.org/10.1145/3540250.3558924

  33. Zheng, Y., Shi, X., Liu, J.: Multi-path back-propagation method for neural network verification. Ruan Jian Xue Bao/J. Softw. 33(7), 2464–2481 (2022). http://www.jos.org.cn/1000-9825/6585.htm. (in Chinese)

Download references

Acknowledgements

We thank all the anonymous reviewers and Gagandeep Singh for their invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, X., Zheng, Y., Liu, J. (2023). Boosting Multi-neuron Convex Relaxation for Neural Network Verification. In: Hermenegildo, M.V., Morales, J.F. (eds) Static Analysis. SAS 2023. Lecture Notes in Computer Science, vol 14284. Springer, Cham. https://doi.org/10.1007/978-3-031-44245-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44245-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44244-5

  • Online ISBN: 978-3-031-44245-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics