Skip to main content

Adaptive Reservoir Neural Gas: An Effective Clustering Algorithm for Addressing Concept Drift in Real-Time Data Streams

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14259))

Included in the following conference series:

  • 840 Accesses

Abstracts

The concept drift phenomenon describes how the statistical properties of a data distribution change over time. In cybersecurity domain, where data arrives continuously and rapidly in a sequential manner, concept drift can be a significant challenge. Identifying concept drift, it enables security analysts to detect emerging attacks, respond promptly, and make informed decisions based on the changing nature of the data being analyzed. The Adaptive Reservoir Neural Gas (AR-NG) clustering algorithm is proposed in this paper to handle concept drift in real-time data streams. It is a novel approach that combines reservoir computing power with the neural gas algorithm, allowing the algorithm to automatically update its clustering structure as new data arrives. Furthermore, in order to effectively handle evolving data streams that significantly change over time in unexpected ways, the proposed method incorporates a density-based clustering mechanism (DBCM) to concept drift detection. Experiments on real-time data streams show that the proposed algorithm is effective at mitigating the impact of concept drift, making it a useful tool for real-time data analysis and decision-making in dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31, 2346–2363 (2018). https://doi.org/10.1109/TKDE.2018.2876857

    Article  Google Scholar 

  2. Yu, H., Liu, T., Lu, J., Zhang, G.: Automatic learning to detect concept drift. arXiv:arXiv:2105.01419 (2021). https://doi.org/10.48550/arXiv.2105.01419

  3. Liu, A., Zhang, G., Lu, J.: Concept drift detection based on anomaly analysis. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8834, pp. 263–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12637-1_33

    Chapter  Google Scholar 

  4. Chauhan, R., Heydari, S.S.: Polymorphic adversarial DDoS attack on IDS using GAN. In: 2020 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6 (2020). https://doi.org/10.1109/ISNCC49221.2020.9297264

  5. Demertzis, K., Iliadis, L.: SAME: an intelligent anti-malware extension for android ART virtual machine. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9330, pp. 235–245. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24306-1_23

    Chapter  Google Scholar 

  6. Demertzis, K., Taketzis, D., Demertzi, V., Skianis, C.: An ensemble transfer learning spiking immune system for adaptive smart grid protection. Energies 15(12), 4398 (2022). https://doi.org/10.3390/en15124398

    Article  Google Scholar 

  7. Alhasan, S., Abdul-Salaam, G., Bayor, L., Oliver, K.: Intrusion detection system based on artificial immune system: a review. In: 2021 International Conference on Cyber Security and Internet of Things (ICSIoT), pp. 7–14 (2021). https://doi.org/10.1109/ICSIoT55070.2021.00011

  8. Hart, A.: Generalised synchronisation for continuous time reservoir computers. Rochester, NY (2021). https://doi.org/10.2139/ssrn.3987856

  9. Demertzis, K., Iliadis, L., Pimenidis, E.: Geo-AI to aid disaster response by memory-augmented deep reservoir computing. Integr. Comput.-Aided Eng. 28(4), 383–398 (2021). https://doi.org/10.3233/ICA-210657

    Article  Google Scholar 

  10. Li, X., Bi, F., Yang, X., Bi, X.: An echo state network with improved topology for time series prediction. IEEE Sens. J. 22(6), 5869–5878 (2022). https://doi.org/10.1109/JSEN.2022.3148742

    Article  Google Scholar 

  11. Abu, U.A., Folly, K.A., Jayawardene, I., Venayagamoorthy, G. K.: Echo state network (ESN) based generator speed prediction of wide area signals in a multimachine power system. In: 2020 International SAUPEC/RobMech/PRASA Conference, pp. 1–5. (2020). https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041236

  12. Bala, A., Ismail, I., Ibrahim, R., Sait, S.M.: Applications of metaheuristics in reservoir computing techniques: a review. IEEE Access 6, 58012–58029 (2018). https://doi.org/10.1109/ACCESS.2018.2873770

    Article  Google Scholar 

  13. Gauthier, D.J., Bollt, E., Griffith, A., Barbosa, W.A.: Next generation reservoir computing. Nat. Commun. 12(1), 5564 (2021). https://doi.org/10.1038/s41467-021-25801-2

    Article  Google Scholar 

  14. Shao, Y., Yao, X., Wang, G., Cao, S.: A new improved echo state network with multiple output layers for time series prediction. In: 2021 6th International Conference on Robotics and Automation Engineering (ICRAE), pp. 7–11. (2021). https://doi.org/10.1109/ICRAE53653.2021.9657812

  15. Demertzis, K., Iliadis, L.: Next generation automated reservoir computing for cyber Defense. In: Maglogiannis, I., Iliadis, L., MacIntyre, J., Dominguez, M. (eds.) Artificial Intelligence Applications and Innovations. AIAI 2023. IFIP Advances in Information and Communication Technology, vol. 676, pp. 16–27. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34107-6_2

  16. Demertzis, K., Iliadis, L.: An autonomous self-learning and self-adversarial training neural architecture for intelligent and resilient cyber security systems. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds.) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol. 1826, pp. 461–478. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34204-2_38

  17. Li, J., Yao, X., Xu, K.: A comprehensive model integrating BP neural network and RSM for the prediction and optimization of syngas quality. Biomass Bioenergy 155, 106278 (2021)

    Article  Google Scholar 

  18. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8(1), 53 (2021). https://doi.org/10.1186/s40537-021-00444-8

    Article  Google Scholar 

  19. Aggarwal, C.C., Philip, S.Y., Han, J., Wang, J.: A framework for clustering evolving data streams. In: Freytag, J.-C., Lockemann, P., Abiteboul, S., Carey, M., Selinger, P., Heuer, A. (eds.) Proceedings 2003 VLDB Conference. Morgan Kaufmann, San Francisco, pp. 81–92 (2003). https://doi.org/10.1016/B978-012722442-8/50016-1

  20. Aggarwal, C.C.: Neighborhood-based collaborative filtering. In: Aggarwal, C.C. (ed.) Recommender Systems: The Textbook, pp. 29–70. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_2

  21. Aumüller, M., Bernhardsson, E., Faithfull, A.: ANN-benchmarks: a benchmarking tool for approximate nearest neighbor algorithms. arXiv: https://doi.org/10.48550/arXiv.1807.05614 (2018)

  22. Bifet, A., de Francisci Morales, G., Read, J., Holmes, G., Pfahringer, B.: Efficient online evaluation of big data stream classifiers. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, in KDD ‘15, pp. 59–68. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2783258.2783372

  23. Sabau, A.S.: Stream clustering using probabilistic data structures. arXiv: https://doi.org/10.48550/arXiv.1612.02701 (2016)

  24. Stepaniants, G.: Learning partial differential equations in reproducing kernel Hilbert spaces. arXiv: https://doi.org/10.48550/arXiv.2108.11580 (2022)

  25. Fujii, K., Kawahara, Y.: Dynamic mode decomposition in vector-valued reproducing kernel Hilbert spaces for extracting dynamical structure among observables. Neural Netw. 117, 94–103 (2019). https://doi.org/10.1016/j.neunet.2019.04.020

    Article  MATH  Google Scholar 

  26. Kostic, V., Novelli, P., Maurer, A., Ciliberto, C., Rosasco, L., Pontil, M.: Learning dynamical systems via Koopman operator regression in reproducing kernel hilbert spaces. arXiv: https://doi.org/10.48550/arXiv.2205.14027 (2022)

  27. Hu, F., Chen, H., Wang, X.: An intuitionistic kernel-based fuzzy C-means clustering algorithm with local information for power equipment image segmentation. IEEE Access 8(4), 4500–4514 (2020)

    Article  Google Scholar 

  28. Hou, R., Tang, F., Liang, S., Ling, G.: Multi-party verifiable privacy-preserving federated k-means clustering in outsourced environment. Secur. Commun. Netw. 2021, e3630312 (2021). https://doi.org/10.1155/2021/3630312

    Article  Google Scholar 

  29. Alkathiri, M., Abdul, J., Potdar, M.B.: Kluster: Application of k-means clustering to multidimensional GEO-spatial data. In: 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), pp. 1–7 (2017). https://doi.org/10.1109/ICOMICON.2017.8279080

  30. Wielgosz, M., Pietroń, M.: Using spatial pooler of hierarchical temporal memory to classify noisy videos with predefined complexity. Neurocomputing 240, 84–97 (2017). https://doi.org/10.1016/j.neucom.2017.02.046

    Article  Google Scholar 

  31. Nguyen, Q.D., Dhouib, S., Chanet, J.P., Bellot, P.: Towards a web-of-things approach for OPC UA field device discovery in the industrial IoT. In: 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS), pp. 1–4 (2022). https://doi.org/10.1109/WFCS53837.2022.9779181

  32. Hahsler, M., Bolaños, M., Forrest, J.: Introduction to stream: an extensible framework for data stream clustering research with R. J. Stat. Softw. 76, 1–50 (2017). https://doi.org/10.18637/jss.v076.i14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Demertzis .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

figure afigure a

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demertzis, K., Iliadis, L., Papaleonidas, A. (2023). Adaptive Reservoir Neural Gas: An Effective Clustering Algorithm for Addressing Concept Drift in Real-Time Data Streams. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14259. Springer, Cham. https://doi.org/10.1007/978-3-031-44223-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44223-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44222-3

  • Online ISBN: 978-3-031-44223-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics