Skip to main content

Graph Federated Learning Based on the Decentralized Framework

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14256))

Included in the following conference series:

  • 898 Accesses

Abstract

Graph learning has a wide range of applications in many scenarios, which require more need for data privacy. Federated learning is an emerging distributed machine learning approach that leverages data from individual devices or data centers to improve the accuracy and generalization of the model, while also protecting the privacy of user data. Graph-federated learning is mainly based on the classical federated learning framework i.e., the Client-Server framework. However, the Client-Server framework faces problems such as a single point of failure of the central server and poor scalability of network topology. First, we introduce the decentralized framework to graph-federated learning. Second, determine the confidence among nodes based on the similarity of data among nodes, subsequently, the gradient information is then aggregated by linear weighting based on confidence. Finally, the proposed method is compared with FedAvg, Fedprox, GCFL, and GCFL+ to verify the effectiveness of the proposed method. Experiments demonstrate that the proposed method outperforms other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  2. Caldarola, D., Mancini, M., Galasso, F., Ciccone, M., Rodolà, E., Caputo, B.: Cluster-driven graph federated learning over multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2749–2758 (2021)

    Google Scholar 

  3. Coulouris, G.F., Dollimore, J., Kindberg, T.: Distributed systems: concepts and design. Pearson Education (2005)

    Google Scholar 

  4. Covert, I.C., et al.: Temporal graph convolutional networks for automatic seizure detection. In: Machine Learning for Healthcare Conference, pp. 160–180. PMLR (2019)

    Google Scholar 

  5. Diao, C., Zhang, D., Liang, W., Li, K.C., Hong, Y., Gaudiot, J.L.: A novel spatial-temporal multi-scale alignment graph neural network security model for vehicles prediction. IEEE Trans. Intell. Transp. Syst. 24(1), 904–914 (2023). https://doi.org/10.1109/TITS.2022.3140229

    Article  Google Scholar 

  6. Guo, T., et al.: Graduate employment prediction with bias. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 670–677 (2020)

    Google Scholar 

  7. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  8. Jiang, H., Cao, P., Xu, M., Yang, J., Zaiane, O.: Hi-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput. Biol. Med. 127, 104096 (2020)

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  11. Lv, M., Hong, Z., Chen, L., Chen, T., Zhu, T., Ji, S.: Temporal multi-graph convolutional network for traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 22(6), 3337–3348 (2020)

    Article  Google Scholar 

  12. Maly, R.J., Mischke, J., Kurtansky, P., Stiller, B.: Comparison of centralized (client-server) and decentralized (peer-to-peer) networking. Semester thesis, ETH Zurich, Zurich, Switzerland, pp. 1–12 (2003)

    Google Scholar 

  13. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  14. Müller, M.: Dynamic time warping. Information retrieval for music and motion, pp. 69–84 (2007). https://doi.org/10.1007/978-3-540-74048-3_4

  15. Pilkington, M.: Blockchain technology: principles and applications. In: Research handbook on digital transformations, pp. 225–253. Edward Elgar Publishing (2016)

    Google Scholar 

  16. Qiu, H., Zheng, Q., Msahli, M., Memmi, G., Qiu, M., Lu, J.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. Intell. Transp. Syst. 22(7), 4560–4569 (2020)

    Article  Google Scholar 

  17. Raval, S.: Decentralized applications: harnessing Bitcoin’s blockchain technology. O’Reilly Media, Inc. (2016)

    Google Scholar 

  18. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  19. Wang, T., et al.: MORONET: multi-omics integration via graph convolutional networks for biomedical data classification. bioRxiv, pp. 2020–07 (2020)

    Google Scholar 

  20. Xia, F., Ahmed, A.M., Yang, L.T., Luo, Z.: Community-based event dissemination with optimal load balancing. IEEE Trans. Comput. 64(7), 1857–1869 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xia, F., Ahmed, A.M., Yang, L.T., Ma, J., Rodrigues, J.J.: Exploiting social relationship to enable efficient replica allocation in ad-hoc social networks. IEEE Trans. Parall. Distrib. Syst. 25(12), 3167–3176 (2014)

    Article  Google Scholar 

  22. Xie, H., Ma, J., Xiong, L., Yang, C.: Federated graph classification over non-IID graphs. Adv. Neural. Inf. Process. Syst. 34, 18839–18852 (2021)

    Google Scholar 

  23. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  24. Zhang, J., Wang, W., Xia, F., Lin, Y.R., Tong, H.: Data-driven computational social science: a survey. Big Data Res. 21, 100145 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, P., Tang, Y., Zhang, M., Chen, W. (2023). Graph Federated Learning Based on the Decentralized Framework. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14256. Springer, Cham. https://doi.org/10.1007/978-3-031-44213-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44213-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44212-4

  • Online ISBN: 978-3-031-44213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics