Skip to main content

An Explainable Feature Selection Approach for Fair Machine Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14261))

Included in the following conference series:

  • 697 Accesses

Abstract

As machine learning (ML) algorithms are extensively adopted in various fields to make decisions of importance to human beings and our society, the fairness issue in algorithm decision-making has been widely studied. To mitigate unfairness in ML, many techniques have been proposed, including pre-processing, in-processing, and post-processing approaches. In this work, we propose an explainable feature selection (ExFS) method to improve the fairness of ML by recursively eliminating features that contribute to unfairness based on the feature attribution explanations of the model’s predictions. To validate the effectiveness of our proposed ExFS method, we compare our approach with other fairness-aware feature selection methods on several commonly used datasets. The experimental results show that ExFS can effectively improve fairness by recursively dropping some features that contribute to unfairness. The ExFS method generally outperforms the compared filter-based feature selection methods in terms of fairness and achieves comparable results to the compared wrapper-based feature selection methods. In addition, our method can provide explanations for the rationale underlying this fairness-aware feature selection mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias (2016). https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

  2. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  3. Dorleon, G., Megdiche, I., Bricon-Souf, N., Teste, O.: Feature selection under fairness constraints. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pp. 1125–1127 (2022)

    Google Scholar 

  4. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–226 (2012)

    Google Scholar 

  5. Gajane, P., Pechenizkiy, M.: On formalizing fairness in prediction with machine learning. arXiv preprint arXiv:1710.03184 (2017)

  6. Grgic-Hlaca, N., Zafar, M.B., Gummadi, K.P., Weller, A.: The case for process fairness in learning: feature selection for fair decision making. In: NIPS Symposium on Machine Learning and the Law, Barcelona, Spain, vol. 1, p. 11 (2016)

    Google Scholar 

  7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  8. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  9. Huang, C., Zhang, Z., Mao, B., Yao, X.: An overview of artificial intelligence ethics. IEEE Trans. Artif. Intell. 1–21 (2022). https://doi.org/10.1109/TAI.2022.3194503

  10. Khodadadian, S., Nafea, M., Ghassami, A., Kiyavash, N.: Information theoretic measures for fairness-aware feature selection. arXiv preprint arXiv:2106.00772 (2021)

  11. Le Quy, T., Roy, A., Iosifidis, V., Zhang, W., Ntoutsi, E.: A survey on datasets for fairness-aware machine learning. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 12(3), 1–59 (2022)

    Google Scholar 

  12. Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 623–631. Association for Computing Machinery, New York (2013)

    Google Scholar 

  13. Lundberg, S.M.: Explaining quantitative measures of fairness. In: Fair & Responsible AI Workshop@ CHI2020 (2020)

    Google Scholar 

  14. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021)

    Article  Google Scholar 

  16. Nori, H., Jenkins, S., Koch, P., Caruana, R.: InterpretML: a unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019)

  17. Pessach, D., Shmueli, E.: A review on fairness in machine learning. ACM Comput. Surv. (CSUR) 55(3), 1–44 (2022)

    Article  Google Scholar 

  18. Rehman, A.U., Nadeem, A., Malik, M.Z.: Fair feature subset selection using multiobjective genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 360–363 (2022)

    Google Scholar 

  19. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. Association for Computing Machinery, New York (2016)

    Google Scholar 

  20. Singh, M.: Fair classification under covariate shift and missing protected attribute-an investigation using related features. arXiv preprint arXiv:2204.07987 (2022)

  21. Thampi, A.: Interpretable AI: Building Explainable Machine Learning Systems. Manning Publications Co. (2022)

    Google Scholar 

  22. Wan, M., Zha, D., Liu, N., Zou, N.: In-processing modeling techniques for machine learning fairness: a survey. ACM Trans. Knowl. Discov. Data 17(3), 1–27 (2023)

    Article  Google Scholar 

  23. Woodworth, B., Gunasekar, S., Ohannessian, M.I., Srebro, N.: Learning non-discriminatory predictors. In: Conference on Learning Theory, pp. 1920–1953. PMLR (2017)

    Google Scholar 

  24. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2015)

    Article  Google Scholar 

  25. Zhou, Y., Booth, S., Ribeiro, M.T., Shah, J.: Do feature attribution methods correctly attribute features? In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 9623–9633 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 62250710682), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No.2017ZT07X386), the Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531), and the Research Institute of Trustworthy Autonomous Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z., Wang, Z., Huang, C., Yao, X. (2023). An Explainable Feature Selection Approach for Fair Machine Learning. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14261. Springer, Cham. https://doi.org/10.1007/978-3-031-44198-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44198-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44197-4

  • Online ISBN: 978-3-031-44198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics