Skip to main content

Hydrogen Sulfide as a Potential Future Therapy for Chronic Kidney Disease, Hyperhomocysteinemia, and Management of Polycystic Kidney Disease

  • Chapter
  • First Online:
Hydrogen Sulfide in Kidney Diseases
  • 55 Accesses

Abstract

Chronic kidney disease (CKD) is a common global health challenge characterized by irreversible pathological processes that reduce kidney function and culminate in the development of end-stage renal disease. It is associated with increased morbidity and mortality in addition to increased caregiver burden and higher financial cost. A central player in CKD pathogenesis and progression is renal hypoxia. Renal hypoxia stimulates induction of oxidative and endoplasmic reticulum stress, inflammation, and tubulointerstitial fibrosis, which in turn promote cellular susceptibility and further aggravate hypoxia, thus forming a pathological vicious cycle in CKD progression. Although the importance of CKD is widely appreciated, including improvements in the quality of existing therapies such as dialysis and transplantation, new therapeutic options are limited, as there is still increased morbidity, mortality, and poor quality of life among CKD patients. Growing evidence indicates that hydrogen sulfide (H2S), a small gaseous signaling molecule with an obnoxious smell, accumulates in the renal medulla under hypoxic conditions and functions as an oxygen sensor that restores oxygen balance and increases medullary flow. Moreover, plasma H2S level has been recently reported to be markedly reduced in CKD patients and animal models. Also, H2S has been established to possess potent antioxidant, anti-inflammatory, and anti-fibrotic properties in several experimental models of kidney diseases, suggesting that its supplementation could protect against CKD and retard its progression. The purpose of this chapter is to discuss current clinical and experimental developments regarding CKD, its pathophysiology, and potential cellular and molecular mechanisms of protection by H2S in experimental models of CKD. A section of the chapter also discusses hyperhomocysteinemia and autosomal dominant polycystic kidney disease, which are forms of CKD, and H2S as an additional/alternative agent for pharmacological treatment or management of these conditions.

This chapter is an expanded version by the same author in the publication titled The smell of renal protection against chronic kidney disease: hydrogen sulfide offers a potential stinky remedy. Pharmacol Rep. 2018;70(2):196–205.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.

    Article  PubMed  Google Scholar 

  2. Bruce MA, Beech BM, Crook ED, Sims M, Wyatt SB, Flessner MF, et al. Association of socioeconomic status and CKD among African Americans: the Jackson Heart Study. Am J Kidney Dis. 2010;55(6):1001–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Obrador GT, Garcia-Garcia G, Villa AR, Rubilar X, Olvera N, Ferreira E, et al. Prevalence of chronic kidney disease in the Kidney Early Evaluation Program (KEEP) Mexico and comparison with KEEP US. Kidney Int Suppl. 2010;116:S2–8.

    Article  Google Scholar 

  4. Ognibene A, Grandi G, Lorubbio M, Rapi S, Salvadori B, Terreni A, et al. KDIGO 2012 clinical practice guideline CKD classification rules out creatinine clearance 24 hour urine collection? Clin Biochem. 2016;49(1–2):85–9.

    Article  CAS  PubMed  Google Scholar 

  5. Nasrallah MM, El-Shehaby AR, Salem MM, Osman NA, El Sheikh E, Sharaf El Din UA. Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol Dial Transplant. 2010;25(8):2679–85.

    Article  CAS  PubMed  Google Scholar 

  6. Houston J, Smith K, Isakova T, Sowden N, Wolf M, Gutiérrez OM. Associations of dietary phosphorus intake, urinary phosphate excretion, and fibroblast growth factor 23 with vascular stiffness in chronic kidney disease. J Ren Nutr. 2013;23(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  7. Hung SC, Lin YP, Tarng DC. Erythropoiesis-stimulating agents in chronic kidney disease: what have we learned in 25 years? J Formos Med Assoc. 2014;113(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  8. Welch WJ, Baumgärtl H, Lübbers D, Wilcox CS. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int. 2001;59(1):230–7.

    Article  CAS  PubMed  Google Scholar 

  9. Maruno M, Kiyosue H, Tanoue S, Hongo N, Matsumoto S, Mori H, et al. Renal arteriovenous shunts: clinical features, imaging appearance, and transcatheter embolization based on angioarchitecture. Radiographics. 2016;36(2):580–95.

    Article  PubMed  Google Scholar 

  10. Safran M, Kim WY, O’Connell F, Flippin L, Günzler V, Horner JW, et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci U S A. 2006;103(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  11. Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol. 2011;22(8):1429–34.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Manotham K, Tanaka T, Matsumoto M, Ohse T, Miyata T, Inagi R, et al. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol. 2004;15:1277–88.

    Article  PubMed  Google Scholar 

  13. Welch WJ, Blau J, Xie H, Chabrashvili T, Wilcox CS. Angiotensin-induced defects in renal oxygenation: role of oxidative stress. Am J Physiol Heart Circ Physiol. 2005;288(1):H22–8.

    Article  CAS  PubMed  Google Scholar 

  14. Peyster E, Chen J, Feldman H, Go AS, Gupta J, Mitra N, et al. Inflammation and arterial stiffness in chronic kidney disease: findings from the CRIC study. Am J Hypertens. 2017;30(4):400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song K, Wang F, Li Q, Shi YB, Zheng HF, Peng H, et al. Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy. Kidney Int. 2014;85(6):1318–29.

    Article  CAS  PubMed  Google Scholar 

  16. Fine LG, Orphanides C, Norman JT. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl. 1998;65:S74–8.

    CAS  PubMed  Google Scholar 

  17. Dugbartey GJ. Diabetic nephropathy: a potential savior with ‘rotten-egg’ smell. Pharmacol Rep. 2017;69(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  18. Dugbartey GJ. H2S as a possible therapeutic alternative for the treatment of hypertensive kidney injury. Nitric Oxide. 2017;64:52–60.

    Article  PubMed  Google Scholar 

  19. Dugbartey GJ, Bouma HR, Lobb I, Sener A. Hydrogen sulfide: a novel nephroprotectant against cisplatin-induced renal toxicity. Nitric Oxide. 2016;57:15–20.

    Article  CAS  PubMed  Google Scholar 

  20. Dugbartey GJ, Peppone LJ, de Graaf IA. An integrative view of cisplatin-induced renal and cardiac toxicities: molecular mechanisms, current treatment challenges and potential protective measures. Toxicology. 2016;371:58–66.

    Article  CAS  PubMed  Google Scholar 

  21. Dugbartey GJ, Bouma HR, Strijkstra AM, Boerema AS, Henning RH. Induction of a torpor-like state by 5′-AMP does not depend on H2S production. PLoS One. 2015;10(8):e0136113.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dugbartey GJ, Talaei F, Houwertjes MC, Goris M, Epema AH, Bouma HR, et al. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming—the role of renal H2S-producing enzymes. Eur J Pharmacol. 2015;769:225–33.

    Article  CAS  PubMed  Google Scholar 

  23. Dugbartey GJ, Hardenberg MC, Kok WF, Boerema A, Carey HV, Staples J, et al. Renal mitochondrial response to low temperature in non-hibernating and hibernating species. Antioxid Redox Signal. 2017;27(9):599–617.

    Article  CAS  PubMed  Google Scholar 

  24. Lobb I, Davidson M, Carter D, Liu W, Haig A, Gunaratnam L, et al. Hydrogen sulfide treatment mitigates renal allograft ischemia-reperfusion injury during cold storage and improves early transplant kidney function and survival following allogeneic renal transplantation. J Urol. 2015;194:1806–15.

    Article  CAS  PubMed  Google Scholar 

  25. Dugbartey GJ, Bouma HR, Saha MN, Lobb I, Henning RH, Sener A. A hibernation-like state for transplantable organs: is hydrogen sulfide therapy the future of organ preservation? Antioxid Redox Signal. 2018;28(16):1503–15. https://doi.org/10.1089/ars.2017.7127.

    Article  CAS  PubMed  Google Scholar 

  26. Aminzadeh MA, Vaziri ND. Downregulation of the renal and hepatic hydrogen sulfide (H2S)-producing enzymes and capacity in chronic kidney disease. Nephrol Dial Transplant. 2012;27:498–504.

    Article  CAS  PubMed  Google Scholar 

  27. Xia M, Chen L, Muh RW, Li PL, Li N. Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J Pharmacol Exp Ther. 2009;329(3):1056–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mikami Y, Shinuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J. 2011;439:479–85.

    Article  CAS  PubMed  Google Scholar 

  29. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, et al. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun. 2013;4:1366.

    Article  PubMed  Google Scholar 

  30. Yamamoto J, Sato W, Kosugi T, Yamamoto T, Kimura T, Taniguchi S, et al. Distribution of hydrogen sulfide (H2S)-producing enzymes and the roles of the H2S donor sodium hydrosulfide in diabetic nephropathy. Clin Exp Nephrol. 2013;17(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  31. Kashfi K, Olso KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol. 2013;85:689–703.

    Article  CAS  PubMed  Google Scholar 

  32. Caliendo G, Cirino G, Santagada V, Wallace JL. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J Med Chem. 2010;53:6275–86.

    Article  CAS  PubMed  Google Scholar 

  33. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation. 2008;117:2351–60.

    Article  CAS  PubMed  Google Scholar 

  34. Gerő D, Torregrossa R, Perry A, Waters A, Le-Trionnaire S, Whatmore JL, et al. The novel mitochondria-targeted hydrogen sulfide (H2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacol Res. 2016;113(Pt A):186–98.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RB, et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A. 2007;104:17977–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ginter E, Simko V. Garlic (Allium sativum L.) and cardiovascular diseases. Bratisl Lek Listy. 2010;111:452–6.

    CAS  PubMed  Google Scholar 

  37. Snijder PM, Frenay AR, Koning AM, Bachtler M, Pasch A, Kwakernaak AJ, et al. Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide. 2014;42:87–98.

    Article  CAS  PubMed  Google Scholar 

  38. Polhemus DJ, Li Z, Pattillo CB, Gojon G Sr, Gojon G Jr, Giordano T, et al. A novel hydrogen sulfide prodrug, SG1002, promotes hydrogen sulfide and nitric oxide bioavailability in heart failure patients. Cardiovasc Ther. 2015;33(4):216–26.

    Article  CAS  PubMed  Google Scholar 

  39. Safar MM, Abdelsalam RM. H2S donors attenuate diabetic nephropathy in rats: modulation of oxidant status and polyol pathway. Pharmacol Rep. 2015;67(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  40. Qian X, Li X, Ma F, Luo S, Ge R, Zhu Y. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy. Biochem Biophys Res Commun. 2016;473(4):931–8.

    Article  CAS  PubMed  Google Scholar 

  41. Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, et al. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol. 2006;209(Pt 20):4011–23.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 2001;20:6008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun Y, Huang Y, Zhang R, Chen Q, Chen J, Zong Y, et al. Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats. J Mol Med. 2015;93:439–55.

    Article  CAS  PubMed  Google Scholar 

  44. Cao C, Lee-Kwon W, Silldorff EP, Pallone TL. KATP channel conductance of descending vasa recta pericytes. Am J Physiol Renal Physiol. 2005;289(6):F1235–45.

    Article  CAS  PubMed  Google Scholar 

  45. Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice. Science. 2005;308(5721):518.

    Article  CAS  PubMed  Google Scholar 

  46. Fu M, Zhang W, Wu L, Yang G, Li H, Wang R. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci U S A. 2012;109:2943–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Teng H, Wu B, Zhao K, Yang G, Wu L, Wang R. Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc Natl Acad Sci U S A. 2013;110(31):12679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Modis K, Coletta C, Erdelyi K, Papapetropoulos A, Szabo C. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J. 2013;27:601–11.

    Article  CAS  PubMed  Google Scholar 

  49. Nordquist L, Friederich-Persson M, Fasching A, Liss P, Shoji K, Nangaku M, et al. Activation of hypoxia-inducible factors prevents diabetic nephropathy. J Am Soc Nephrol. 2015;26(2):328–38.

    Article  PubMed  Google Scholar 

  50. Rosenberger C, Mandriota S, Jürgensen JS, Wiesener MS, Hörstrup JH, Frei U, et al. Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol. 2002;13(7):1721–32.

    Article  CAS  PubMed  Google Scholar 

  51. Wiesener MS, Jürgensen JS, Rosenberger C, Scholze CK, Hörstrup JH, Warnecke C, et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 2003;17(2):271–3.

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka T, Matsumoto M, Inagi R, Miyata T, Kojima I, Ohse T, et al. Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int. 2005;68(6):2714–25.

    Article  CAS  PubMed  Google Scholar 

  53. Ohtomo S, Nangaku M, Izuhara Y, Takizawa S, Strihou CV, Miyata T. Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol Dial Transplant. 2008;23(4):1166–72.

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T, et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest. 2005;85(10):1292–307.

    Article  CAS  PubMed  Google Scholar 

  55. Song YR, You SJ, Lee YM, Chin HJ, Chae DW, Oh YK, et al. Activation of hypoxia-inducible factor attenuates renal injury in rat remnant kidney. Nephrol Dial Transplant. 2010;25(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  56. Deng A, Arndt MA, Satriano J, Singh P, Rieg T, Thomson S, et al. Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade. Am J Physiol Renal Physiol. 2010;299(6):F1365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bernhardt WM, Wiesener MS, Weidemann A, Schmitt R, Weichert W, Lechler P, et al. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am J Pathol. 2007;170(3):830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu X, Fang Y, Ding X, Liu H, Zhu J, Zou J, et al. Transient hypoxia-inducible factor activation in rat renal ablation and reduced fibrosis with L-mimosine. Nephrology (Carlton). 2012;17(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  59. Katavetin P, Miyata T, Inagi R, Tanaka T, Sassa R, Ingelfinger JR, et al. High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J Am Soc Nephrol. 2006;17(5):1405–13.

    Article  CAS  PubMed  Google Scholar 

  60. Rosenberger C, Khamaisi M, Abassi Z, Shilo V, Weksler-Zangen S, Goldfarb M, et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int. 2008;73(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  61. Liu L, Marti GP, Wei X, Zhang X, Zhang H, Liu YV, et al. Age-dependent impairment of HIF-1alpha expression in diabetic mice: correction with electroporation-facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J Cell Physiol. 2008;217(2):319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L. Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes. 2004;53(12):3226–32.

    Article  CAS  PubMed  Google Scholar 

  63. Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K, et al. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol. 2008;295(4):F1023–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Z, Zhu Q, Li PL, Dhaduk R, Zhang F, Gehr TW, et al. Silencing of hypoxia-inducible factor-1α gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats. Am J Physiol Renal Physiol. 2014;306(10):F1236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luo R, Zhang W, Zhao C, Zhang Y, Wu H, Jin J, et al. Elevated endothelial hypoxia-inducible factor-1α contributes to glomerular injury and promotes hypertensive chronic kidney disease. Hypertension. 2015;66(1):75–84.

    Article  CAS  PubMed  Google Scholar 

  66. Flannigan KL, Agbor TA, Motta JP, Ferraz JG, Wang R, Buret AG, et al. Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxia-inducible factor-1α. FASEB J. 2015;29(4):1591–602.

    Article  CAS  PubMed  Google Scholar 

  67. Padiya R, Khatua TN, Bagul PK, Kuncha M, Banerjee SK. Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats. Nutr Metab (Lond). 2011;8:53.

    Article  CAS  PubMed  Google Scholar 

  68. Ried K, Frank OR, Stocks NP. Aged garlic extract reduces blood pressure in hypertensives: a dose-response trial. Eur J Clin Nutr. 2013;67:64–70.

    Article  CAS  PubMed  Google Scholar 

  69. Liu X, Pan L, Zhuo Y, Gong Q, Rose P, Zhu Y. Hypoxia-inducible factor-1α is involved in the pro-angiogenic effect of hydrogen sulfide under hypoxic stress. Biol Pharm Bull. 2010;33(9):1550–4.

    Article  CAS  PubMed  Google Scholar 

  70. Lohninger L, Tomasova L, Praschberger M, Hintersteininger M, Erker T, Gmeiner BM, et al. Hydrogen sulphide induces HIF-1α and Nrf2 in THP-1 macrophages. Biochimie. 2015;112:187–95.

    Article  CAS  PubMed  Google Scholar 

  71. Kai S, Tanaka T, Daijo H, Harada H, Kishimoto S, Suzuki K, et al. Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von Hippel-Lindau- and mitochondria-dependent manner. Antioxid Redox Signal. 2012;16(3):203–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang G, Yang W, Wu L, Wang R. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. J Biol Chem. 2007;282(22):16567–76.

    Article  CAS  PubMed  Google Scholar 

  73. Yang G, Li H, Tang G, Wu L, Zhao K, Cao Q, et al. Increased neointimal formation in cystathionine gamma-lyase deficient mice: role of hydrogen sulfide in α5β1-integrin and matrix metalloproteinase-2 expression in smooth muscle cells. J Mol Cell Cardiol. 2012;52(3):677–88.

    Article  CAS  PubMed  Google Scholar 

  74. Wu B, Teng H, Yang G, Wu L, Wang R. Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-alpha. Br J Pharmacol. 2012;167(7):1492–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Astor BC, Muntner P, Levin A, Eustace JA, Coresh J. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). Arch Intern Med. 2002;162(12):1401–8.

    Article  PubMed  Google Scholar 

  76. Garrido P, Ribeiro S, Fernandes J, Vala H, Bronze-da-Rocha E, Rocha-Pereira P, et al. Iron-hepcidin dysmetabolism, anemia and renal hypoxia, inflammation and fibrosis in the remnant kidney rat model. PLoS One. 2015;10(4):e0124048.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jacobson LO, Goldwasser E, Fried W, Plzak L. Role of the kidney in erythropoiesis. Nature. 1957;179(4560):633–4.

    Article  CAS  PubMed  Google Scholar 

  78. McGonigle RJ, Wallin JD, Shadduck RK, Fisher JW. Erythropoietin deficiency and inhibition of erythropoiesis in renal insufficiency. Kidney Int. 1984;25(2):437–44.

    Article  CAS  PubMed  Google Scholar 

  79. Greenwood RN, Ronco C, Gastaldon F, Brendolan A, Homel P, Usvyat L, et al. Erythropoietin dose variation in different facilities in different countries and its relationship to drug resistance. Kidney Int Suppl. 2003;(87):S78-S86.

    Google Scholar 

  80. Yilmaz MI, Solak Y, Covic A, Goldsmith D, Kanbay M. Renal anemia of inflammation: the name is self-explanatory. Blood Purif. 2011;32:220–5.

    Article  PubMed  Google Scholar 

  81. Leigh J, Saha MN, Mok A, Champsi O, Wang R, Lobb I, et al. Hydrogen sulfide-induced erythropoietin synthesis is regulated by HIF proteins. J Urol. 2016;196(1):251–60.

    Article  CAS  PubMed  Google Scholar 

  82. Wang M, Tang W, Xin H, Zhu YZ. S-propargyl-cysteine, a novel hydrogen sulfide donor, inhibits inflammatory hepcidin and relieves anemia of inflammation by inhibiting IL-6/STAT3 pathway. PLoS One. 2016;11(9):e0163289.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jairam A, Das R, Aggarwal PK, Kohli HS, Gupta KL, Sakhuja V, et al. Iron status, inflammation and hepcidin in ESRD patients: the confounding role of intravenous iron therapy. Indian J Nephrol. 2010;20(3):125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zaritsky J, Young B, Wang HJ, Westerman M, Olbina G, Nemeth E, et al. Hepcidin—a potential novel biomarker for iron status in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(6):1051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xin H, Wang M, Tang W, Shen Z, Miao L, Wu W, et al. Hydrogen sulfide attenuates inflammatory hepcidin by reducing IL-6 secretion and promoting SIRT1-mediated STAT3 deacetylation. Antioxid Redox Signal. 2016;24(2):70–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jiang D, Zhang Y, Yang M, Wang S, Jiang Z, Li Z. Exogenous hydrogen sulfide prevents kidney damage following unilateral ureteral obstruction. Neurourol Urodyn. 2014;33:538–43.

    Article  CAS  PubMed  Google Scholar 

  87. Basu RK, Hubchak S, Hayashida T, Runyan CE, Schumacker PT, Schnaper HW. Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol. 2011;300(4):F898–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Manotham K, Tanaka T, Matsumoto M, Ohse T, Inagi R, Miyata T, et al. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int. 2004;65(3):871–80.

    Article  PubMed  Google Scholar 

  89. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19(12):2282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Perna AF, Luciano MG, Ingrosso D, Pulzella P, Sepe I, Lanza D, et al. Hydrogen sulphide-generating pathways in haemodialysis patients: a study on relevant metabolites and transcriptional regulation of genes encoding for key enzymes. Nephrol Dial Transplant. 2009;24(12):3756–63.

    Article  CAS  PubMed  Google Scholar 

  91. Feng SJ, Li H, Wang SX. Lower hydrogen sulfide is associated with cardiovascular mortality, which involves cPKCβII/Akt pathway in chronic hemodialysis patients. Blood Purif. 2015;40(3):260–9. Transl Res 2008; 151: 110–117.

    Article  CAS  PubMed  Google Scholar 

  92. Sen U, Basu P, Abe OA, Givvimani S, Tyagi N, Metreveli N, et al. Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am J Physiol Renal Physiol. 2009;297(2):F410–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jung KJ, Jang HS, Kim JI, Han SJ, Park JW, Park KM. Involvement of hydrogen sulfide and homocysteine transsulfuration pathway in the progression of kidney fibrosis after ureteral obstruction. Biochim Biophys Acta. 2013;1832(12):1989–97.

    Article  CAS  PubMed  Google Scholar 

  94. Zhao DA, Liu J, Huang Q, Han ZM. Change in plasma H2S level and therapeutic effect of H2S supplementation in tubulointerstitial fibrosis among rats with unilateral ureteral obstruction. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(10):903–8.

    CAS  PubMed  Google Scholar 

  95. Guo L, Peng W, Tao J, Lan Z, Hei H, Tian L, et al. Hydrogen sulfide inhibits transforming growth factor-β1-induced EMT via Wnt/catenin pathway. PLoS One. 2016;11(1):e0147018.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fang LP, Lin Q, Tang CS, Liu XM. Hydrogen sulfide suppresses migration, proliferation and myofibroblast transdifferentiation of human lung fibroblasts. Pulm Pharmacol Ther. 2009;22(6):554–61.

    Article  CAS  PubMed  Google Scholar 

  97. Schwer CI, Stoll P, Goebel U, Buerkle H, Hoetzel A, Schmidt R. Effects of hydrogen sulfide on rat pancreatic stellate cells. Pancreas. 2012;41(1):74–83.

    Article  CAS  PubMed  Google Scholar 

  98. Fan HN, Wang HJ, Yang-Dan CR, Ren L, Wang C, Li YF, et al. Protective effects of hydrogen sulfide on oxidative stress and fibrosis in hepatic stellate cells. Mol Med Rep. 2013;7(1):247–53.

    Article  CAS  PubMed  Google Scholar 

  99. Pan LL, Liu XH, Shen YQ, Wang NZ, Xu J, Wu D, et al. Inhibition of NADPH oxidase 4-related signaling by sodium hydrosulfide attenuates myocardial fibrotic response. Int J Cardiol. 2013;168(4):3770–8.

    Article  PubMed  Google Scholar 

  100. Sheng J, Shim W, Wei H, Lim SY, Liew R, Lim TS, et al. Hydrogen sulphide suppresses human atrial fibroblast proliferation and transformation to myofibroblasts. J Cell Mol Med. 2013;17(10):1345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fang LP, Lin Q, Tang CS, Liu XM. Hydrogen sulfide attenuates epithelial-mesenchymal transition of human alveolar epithelial cells. Pharmacol Res. 2010;61(4):298–305.

    Article  CAS  PubMed  Google Scholar 

  102. Wolf G, Zahner G, Schroeder R, Stahl RA. Transforming growth factor beta mediates the angiotensin-II-induced stimulation of collagen type IV synthesis in cultured murine proximal tubular cells. Nephrol Dial Transplant. 1996;11(2):263–9.

    Article  CAS  PubMed  Google Scholar 

  103. Cuevas CA, Gonzalez AA, Inestrosa NC, Vio CP, Prieto MC. Angiotensin II increases fibronectin and collagen I through the β-catenin-dependent signaling in mouse collecting duct cells. Am J Physiol Renal Physiol. 2015;308(4):F358–65.

    Article  CAS  PubMed  Google Scholar 

  104. Choi DE, Jeong JY, Lim BJ, Chang YK, Na KR, Shin YT, et al. Aliskiren ameliorates renal inflammation and fibrosis induced by unilateral ureteral obstruction in mice. J Urol. 2011;186(2):694–701.

    Article  CAS  PubMed  Google Scholar 

  105. Lu M, Liu YH, Goh HS, Wang JJ, Yong QC, Wang R, et al. Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol. 2010;21(6):993–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu M, Liu YH, Ho CY, Tiong CX, Bian JS. Hydrogen sulfide regulates cAMP homeostasis and renin degranulation in As4.1 and rat renin-rich kidney cells. Am J Physiol Cell Physiol. 2012;302(1):C59–66.

    Article  CAS  PubMed  Google Scholar 

  107. Laggner H, Hermann M, Esterbauer H, Muellner MK, Exner M, Gmeiner BM, et al. The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J Hypertens. 2007;25(10):2100–4.

    Article  CAS  PubMed  Google Scholar 

  108. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  109. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  110. Palm F, Cederberg J, Hansell P, Liss P, Carlsson PO. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia. 2003;46(8):1153–60.

    Article  CAS  PubMed  Google Scholar 

  111. Granata S, Zaza G, Simone S, Villani G, Latorre D, Pontrelli P, et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics. 2009;10:388.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cuttle L, Zhang XJ, Endre ZH, Winterford C, Gobe GC. Bcl-X(L) translocation in renal tubular epithelial cells in vitro protects distal cells from oxidative stress. Kidney Int. 2001;59:1779–88.

    Article  CAS  PubMed  Google Scholar 

  113. Kawakami T, Inagi R, Wada T, Tanaka T, Fujita T, Nangaku M. Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress. Am J Physiol Renal Physiol. 2010;299(3):F568–76.

    Article  CAS  PubMed  Google Scholar 

  114. Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transplant. 2003;18(7):1272–80.

    Article  CAS  PubMed  Google Scholar 

  115. Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M, Nguyen AT, Thévenin M, Jaudon MC, et al. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic Biol Med. 1996;21(6):845–53.

    Article  CAS  PubMed  Google Scholar 

  116. Zachara BA, Gromadzinska J, Zbrog Z, Swiech R, Wasowicz W, Twardowska E, et al. Selenium supplementation to chronic kidney disease patients on hemodialysis does not induce the synthesis of plasma glutathione peroxidase. Acta Biochim Pol. 2009;56(1):183–7.

    Article  CAS  PubMed  Google Scholar 

  117. Roob JM, Khoschsorur G, Tiran A, Horina JH, Holzer H, Winklhofer-Roob BM. Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. J Am Soc Nephrol. 2000;11(3):539–49.

    Article  CAS  PubMed  Google Scholar 

  118. Vecchi C, Montosi G, Zhang K, Lamberti I, Duncan SA, Kaufman RJ, et al. ER stress controls iron metabolism through induction of hepcidin. Science. 2009;325(5942):877–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chiang CK, Nangaku M, Tanaka T, Iwawaki T, Inagi R. Endoplasmic reticulum stress signal impairs erythropoietin production: a role for ATF4. Am J Physiol Cell Physiol. 2013;304(4):C342–53.

    Article  CAS  PubMed  Google Scholar 

  120. Wu D, Luo N, Wang L, Zhao Z, Bu H, Xu G, et al. Hydrogen sulfide ameliorates chronic renal failure in rats by inhibiting apoptosis and inflammation through ROS/MAPK and NF-Ò¡B signaling pathways. Sci Rep. 2017;7(1):455.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dursun M, Otunctemur A, Ozbek E, Sahin S, Besiroglu H, Ozsoy OD, et al. Protective effect of hydrogen sulfide in renal injury in the experimental unilateral ureteral obstruction. IBJU. 2015;41(6):1185–93.

    Google Scholar 

  122. Han SJ, Kim JI, Park JW, Park KM. Hydrogen sulfide accelerates the recovery of kidney tubules after renal ischemia/reperfusion injury. Nephrol Dial Transplant. 2015;30:1497–506.

    Article  CAS  PubMed  Google Scholar 

  123. Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res. 2009;105(4):365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wedmann R, Onderka C, Wei S, Szijártó IA, Miljkovic JL, Mitrovic A, et al. Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci. 2016;7(5):3414–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang R, Teng X, Li H, Xue HM, Guo Q, Xiao L, et al. Hydrogen sulfide improves vascular calcification in rats by inhibiting endoplasmic reticulum stress. Oxid Med Cell Longev. 2016;2016:9095242.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Burnie R, Smail S, Javaid MM. Calciphylaxis and sodium thiosulphate: a glimmer of hope in desperate situation. J Ren Care. 2013;39(2):71–6.

    Article  PubMed  Google Scholar 

  127. Nigwekar SU, Brunelli SM, Meade D, Wang W, Hymes J, Lacson E Jr. Sodium thiosulfate therapy for calcific uremic arteriolopathy. Clin J Am Soc Nephrol. 2013;8(7):1162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ying R, Wang XQ, Yang Y, Gu ZJ, Mai JT, Qiu Q, et al. Hydrogen sulfide suppresses endoplasmic reticulum stress-induced endothelial-to-mesenchymal transition through Src pathway. Life Sci. 2016;144:208–17.

    Article  CAS  PubMed  Google Scholar 

  129. Rodriguez F, Lamon BD, Gong W, Kemp R, Nasjletti A. Nitric oxide synthesis inhibition promotes renal production of carbon monoxide. Hypertension. 2004;43:347–51.

    Article  CAS  PubMed  Google Scholar 

  130. Botros FT, Navar LG. Interaction between endogenously produced carbon monoxide and nitric oxide in regulation of renal afferent arterioles. Am J Physiol Heart Circ Physiol. 2006;291:H2772–8.

    Article  CAS  PubMed  Google Scholar 

  131. Rong-na L, Xiang-jun Z, Yu-han C, Ling-qiao L, Gang H. Interaction between hydrogen sulfide and nitric oxide on cardiac protection in rats with metabolic syndrome. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2011;33:25–32.

    PubMed  Google Scholar 

  132. Oosterhuis NR, Frenay AR, Wesseling S, Snijder PM, Slaats GG, Yazdani S, et al. DL-propargylglycine reduces blood pressure and renal injury but increases kidney weight in angiotensin-II infused rats. Nitric Oxide. 2015;49:56–66.

    Article  CAS  PubMed  Google Scholar 

  133. Wesseling S, Fledderus JO, Verhaar MC, Joles JA. Beneficial effects of diminished production of hydrogen sulfide and carbon monoxide on hypertension and renal injury induced by NO withdrawal. Br J Pharmacol. 2015;172(6):1607–19.

    Article  CAS  PubMed  Google Scholar 

  134. Wesseling S, Joles JA, van Goor H, Bluyssen HA, Kemmeren P, Holstege FC, et al. Transcriptome-based identification of pro- and antioxidative gene expression in kidney cortex of nitric oxide-dependent rats. Physiol Genomics. 2007;28:158–67.

    Article  CAS  PubMed  Google Scholar 

  135. Xu Z, Prathapasinghe G, Wu N, Hwang SY, Siow YL, Karmin O. Ischemia-reperfusion reduces cystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney. Am J Physiol Renal Physiol. 2009;297:F27–35.

    Article  CAS  PubMed  Google Scholar 

  136. Tripatara P, Patel NS, Gallicchio M, Kieswich J, Castiglia S, Benetti E, et al. Generation of endogenous hydrogen sulfide by cystathionine gamma-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab Invest. 2008;88:1038–48.

    Article  CAS  PubMed  Google Scholar 

  137. Finkelstein JD. The metabolism of homocysteine: pathways and regulation. Eur J Pediatr. 1998;157(Suppl 2):S40–4.

    Article  CAS  PubMed  Google Scholar 

  138. Pin-Lan L, Fan Y, Ningjun L. Hyperhomocysteinemia: association with renal transsulfuration and redox signaling in rats. Clin Chem Lab Med. 2007;45(12):1688–93.

    Article  PubMed  Google Scholar 

  139. Hermann A, Sitdikova G. Homocysteine: biochemistry, molecular biology and role in disease. Biomolecules. 2021;11(5):737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. House AA, Eliasziw M, Cattran DC, Churchill DN, Oliver MJ, Fine A, Dresser GK, Spence JD. Effect of B-vitamin therapy on progression of diabetic nephropathy: a randomized controlled trial. JAMA. 2010;303(16):1603–9.

    Article  CAS  PubMed  Google Scholar 

  141. Soohoo M, Ahmadi SF, Qader H, Streja E, Obi Y, Moradi H, Rhee CM, Kim TH, Kovesdy CP, Kalantar-Zadeh K. Association of serum vitamin B12 and folate with mortality in incident hemodialysis patients. Nephrol Dial Transplant. 2017;32(6):1024–32.

    Article  CAS  PubMed  Google Scholar 

  142. Mizuno T, Hoshino T, Ishizuka K, Toi S, Takahashi S, Wako S, Arai S, Kitagawa K. Hyperhomocysteinemia increases vascular risk in stroke patients with chronic kidney disease. J Atheroscler Thromb. 2023;30(9):1198–209.

    Article  CAS  PubMed  Google Scholar 

  143. Shen Z, Zhang Z, Zhao W. Relationship between plasma homocysteine and chronic kidney disease in US patients with type 2 diabetes mellitus: a cross-sectional study. BMC Nephrol. 2022;23(1):419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shevchuk SV, Postovitenko KP, Iliuk IA, Bezsmertna HV, Bezsmertnyi YO, Kurylenko IV, Biloshytska AV, Baranova IV. The relationship between homocysteine level and vitamins B12, B9 and B6 status in patients with chronic kidney disease. Wiad Lek. 2019;72(4):532–8.

    Article  PubMed  Google Scholar 

  145. van Guldener C, Lambert J, ter Wee PM, Donker AJ, Stehouwer CD. Carotid artery stiffness in patients with end-stage renal disease: no effect of long-term homocysteine-lowering therapy. Clin Nephrol. 2000;53(1):33–41.

    PubMed  Google Scholar 

  146. van Guldener C. Why is homocysteine elevated in renal failure and what can be expected from homocysteine-lowering? Nephrol Dial Transplant. 2006;21(5):1161–6.

    Article  PubMed  Google Scholar 

  147. Nair AP, Nemirovsky D, Kim M, Geer EB, Farkouh ME, Winston J, Halperin JL, Robbins MJ. Elevated homocysteine levels in patients with end-stage renal disease. Mt Sinai J Med. 2005;72(6):365–73.

    PubMed  Google Scholar 

  148. Miller JW, Nadeau MR, Smith D, Selhub J. Vitamin B-6 deficiency vs folate deficiency: comparison of responses to methionine loading in rats. Am J Clin Nutr. 1994;59(5):1033–9.

    Article  CAS  PubMed  Google Scholar 

  149. Li N, Chen L, Muh RW, Li PL. Hyperhomocysteinemia associated with decreased renal transsulfuration activity in Dahl S rats. Hypertension. 2006;47(6):1094–100.

    Article  CAS  PubMed  Google Scholar 

  150. Sen U, Sathnur PB, Kundu S, Givvimani S, Coley DM, Mishra PK, Qipshidze N, Tyagi N, Metreveli N, Tyagi SC. Increased endogenous H2S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. Am J Physiol Cell Physiol. 2012;303:C41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kamat PK, Kalani A, Givvimani S, Sathnur PB, Tyagi SC, Tyagi N. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience. 2013;252:302–19.

    Article  CAS  PubMed  Google Scholar 

  152. Pushpakumar S, Kundu S, Sen U. Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem. 2014;21:3662–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sen U, Basu P, Abe OA, Givvimani S, Tyagi N, Metreveli N, Shah KS, Passmore JC, Tyagi SC. Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am J Physiol Renal Physiol. 2009;297(2):F410–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sen U, Munjal C, Qipshidze N, Abe O, Gargoum R, Tyagi SC. Hydrogen sulfide regulates homocysteine-mediated glomerulosclerosis. Am J Nephrol. 2010;31(5):442–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sen U, Givvimani S, Abe OA, Lederer ED, Tyagi SC. Cystathionine β-synthase and cystathionine γ-lyase double gene transfer ameliorate homocysteine-mediated mesangial inflammation through hydrogen sulfide generation. Am J Physiol Cell Physiol. 2011;300(1):C155–63.

    Article  CAS  PubMed  Google Scholar 

  156. Majumder S, Ren L, Pushpakumar S, Sen U. Hydrogen sulphide mitigates homocysteine-induced apoptosis and matrix remodelling in mesangial cells through Akt/FOXO1 signalling cascade. Cell Signal. 2019;61:66–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. John ASP, Sen U. GYY4137 modulates renal remodeling in hyperhomocysteinemia. FASEB J. 2019;33(S1):570–3.

    Article  Google Scholar 

  158. Pushpakumar S, Kundu S, Sen U. Hydrogen sulfide protects hyperhomocysteinemia induced renal damage by modulation of caveolin and eNOS interaction. Sci Rep. 2019;9(1):2223.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Chapman AB, Devuyst O, Eckardt KU, Gansevoort RT, Harris T, Horie S, Kasiske BL, Odland D, Pei Y, Perrone RD, Pirson Y, Schrier RW, Torra R, Torres VE, Watnick T, Wheeler DC, Conference Participants. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2015;88(1):17–27.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hajjar K, Bou Chebl R, Kanso M, Abou DG. Autosomal dominant polycystic kidney disease and minimal trauma: medical review and case report. BMC Emerg Med. 2018;18(1):38.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Gabow PA, Duley I, Johnson AM. Clinical profiles of gross hematuria in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1992;20(2):140–3.

    Article  CAS  PubMed  Google Scholar 

  162. Cornec-Le Gall E, Alam A, Perrone RD. Autosomal dominant polycystic kidney disease. Lancet. 2019;393(10174):919–35.

    Article  PubMed  Google Scholar 

  163. Lanktree MB, Haghighi A, di Bari I, Song X, Pei Y. Insights into autosomal dominant polycystic kidney disease from genetic studies. Clin J Am Soc Nephrol. 2021;16(5):790–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nutahara K, Higashihara E, Horie S, Kamura K, Tsuchiya K, Mochizuki T, Hosoya T, Nakayama T, Yamamoto N, Higaki Y, Shimizu T. Calcium channel blocker versus angiotensin II receptor blocker in autosomal dominant polycystic kidney disease. Nephron Clin Pract. 2005;99(1):c18–23.

    Article  CAS  PubMed  Google Scholar 

  165. Meijer E, Gansevoort RT. Vasopressin V2 receptor antagonists in autosomal dominant polycystic kidney disease: efficacy, safety, and tolerability. Kidney Int. 2020;98(2):289–93.

    Article  CAS  PubMed  Google Scholar 

  166. Di Iorio BR, Cupisti A, D’Alessandro C, Bellasi A, Barbera V, Di Lullo L. Nutritional therapy in autosomal dominant polycystic kidney disease. J Nephrol. 2018;31(5):635–43.

    Article  PubMed  Google Scholar 

  167. Jacquet A, Pallet N, Kessler M, Hourmant M, Garrigue V, Rostaing L, Kreis H, Legendre C, Mamzer-Bruneel MF. Outcomes of renal transplantation in patients with autosomal dominant polycystic kidney disease: a nationwide longitudinal study. Transpl Int. 2011;24(6):582–7.

    Article  PubMed  Google Scholar 

  168. Yeh SC, Lin YC, Hong YC, Hsu CC, Lin YC, Wu MS. Different effects of iron indices on mortality in patients with autosomal dominant polycystic kidney disease after long-term hemodialysis: a nationwide population-based study. J Ren Nutr. 2019;29(5):444–53.

    Article  CAS  PubMed  Google Scholar 

  169. Wang D, Iversen J, Wilcox CS, Strandgaard S. Endothelial dysfunction and reduced nitric oxide in resistance arteries in autosomal-dominant polycystic kidney disease. Kidney Int. 2003;64(4):1381–8.

    Article  CAS  PubMed  Google Scholar 

  170. Wang D, Iversen J, Strandgaard S. Endothelium-dependent relaxation of small resistance vessels is impaired in patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2000;11(8):1371–6.

    Article  CAS  PubMed  Google Scholar 

  171. Nowak KL, Wang W, Farmer-Bailey H, Gitomer B, Malaczewski M, Klawitter J, Jovanovich A, Chonchol M. Vascular dysfunction, oxidative stress, and inflammation in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2018;13(10):1493–501.

    Article  CAS  PubMed Central  Google Scholar 

  172. Klawitter J, Reed-Gitomer BY, McFann K, Pennington A, Klawitter J, Abebe KZ, Klepacki J, Cadnapaphornchai MA, Brosnahan G, Chonchol M, Christians U, Schrier RW. Endothelial dysfunction and oxidative stress in polycystic kidney disease. Am J Physiol Renal Physiol. 2014;307(11):F1198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Andries A, Daenen K, Jouret F, Bammens B, Mekahli D, Van Schepdael A. Oxidative stress in autosomal dominant polycystic kidney disease: player and/or early predictor for disease progression? Pediatr Nephrol. 2019;34(6):993–1008.

    Article  PubMed  Google Scholar 

  174. Cowley BD Jr, Ricardo SD, Nagao S, Diamond JR. Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney Int. 2001;60(6):2087–96.

    Article  CAS  PubMed  Google Scholar 

  175. Pastor-Soler NM, Li H, Pham J, Rivera D, Ho PY, Mancino V, Saitta B, Hallows KR. Metformin improves relevant disease parameters in an autosomal dominant polycystic kidney disease mouse model. Am J Physiol Renal Physiol. 2022;322(1):F27–41.

    Article  CAS  PubMed  Google Scholar 

  176. Menon V, Rudym D, Chandra P, Miskulin D, Perrone R, Sarnak M. Inflammation, oxidative stress, and insulin resistance in polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6(1):7–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Merta M, Tesar V, Zima T, Jirsa M, Rysavá R, Zabka J. Cytokine profile in autosomal dominant polycystic kidney disease. Biochem Mol Biol Int. 1997;41(3):619–24.

    CAS  PubMed  Google Scholar 

  178. Zheng D, Wolfe M, Cowley BD Jr, Wallace DP, Yamaguchi T, Grantham JJ. Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2003;14(10):2588–95.

    Article  CAS  PubMed  Google Scholar 

  179. Lai S, Petramala L, Muscaritoli M, Cianci R, Mazzaferro S, Mitterhofer AP, Pasquali M, D’Ambrosio V, Carta M, Ansuini M, Ramaccini C, Galani A, Amabile MI, Molfino A, Letizia C. α-lipoic acid in patients with autosomal dominant polycystic kidney disease. Nutrition. 2020;71:110594.

    Article  CAS  PubMed  Google Scholar 

  180. Maser RL, Vassmer D, Magenheimer BS, Calvet JP. Oxidant stress and reduced antioxidant enzyme protection in polycystic kidney disease. J Am Soc Nephrol. 2002;13(4):991–9.

    Article  CAS  PubMed  Google Scholar 

  181. Wang D, Strandgaard S, Borresen ML, Luo Z, Connors SG, Yan Q, Wilcox CS. Asymmetric dimethylarginine and lipid peroxidation products in early autosomal dominant polycystic kidney disease. Am J Kidney Dis. 2008;51(2):184–91.

    Article  CAS  PubMed  Google Scholar 

  182. Ismaeel A, Brumberg RS, Kirk JS, Papoutsi E, Farmer PJ, Bohannon WT, Smith RS, Eidson JL, Sawicki I, Koutakis P. Oxidative stress and arterial dysfunction in peripheral artery disease. Antioxidants (Basel). 2018;7(10):145.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zhao R, Ma X, Xie X, Shen GX. Involvement of NADPH oxidase in oxidized LDL-induced upregulation of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Am J Physiol Endocrinol Metab. 2009;297(1):E104–11.

    Article  CAS  PubMed  Google Scholar 

  184. Padmalayam I, Hasham S, Saxena U, Pillarisetti S. Lipoic acid synthase (LASY): a novel role in inflammation, mitochondrial function and insulin resistance. Diabetes. 2000;58:600–8.

    Article  Google Scholar 

  185. Szelag M, Mikulski D, Molski M. Quantum-chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites. J Mol Model. 2012;18:2907–16.

    Article  CAS  PubMed  Google Scholar 

  186. Dugbartey GJ, Alornyo KK, Diaba DE, Adams I. Activation of renal CSE/H2S pathway by alpha-lipoic acid protects against histological and functional changes in the diabetic kidney. Biomed Pharmacother. 2022;153:113386.

    Article  CAS  PubMed  Google Scholar 

  187. Chang JW, Lee EK, Kim TH, Min WK, Chun S, Lee KU, Kim SB, Park JS. Effects of alpha-lipoic acid on the plasma levels of asymmetric dimethylarginine in diabetic end-stage renal disease patients on hemodialysis: a pilot study. Am J Nephrol. 2007;27:70–4.

    Article  CAS  PubMed  Google Scholar 

  188. Dugbartey GJ, Wonje QL, Alornyo KK, Adams I, Diaba DE. Alpha-lipoic acid treatment improves adverse cardiac remodelling in the diabetic heart—the role of cardiac hydrogen sulfide-synthesizing enzymes. Biochem Pharmacol. 2022;203:115179.

    Article  CAS  PubMed  Google Scholar 

  189. Dugbartey GJ, Alornyo KK, Adams I, Atule S, Obeng-Kyeremeh R, Amoah D, Adjei S. Targeting hepatic sulfane sulfur/hydrogen sulfide signaling pathway with α-lipoic acid to prevent diabetes-induced liver injury via upregulating hepatic CSE/3-MST expression. Diabetol Metab Syndr. 2022;14(1):148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bilska A, Dudek M, Iciek M, Kwiecień I, Sokołowska-Jezewicz M, Filipek B, Włodek L. Biological actions of lipoic acid associated with sulfane sulfur metabolism. Pharmacol Rep. 2008;60(2):225–32.

    CAS  PubMed  Google Scholar 

  191. Bilska-Wilkosz A, Iciek M, Kowalczyk-Pachel D, Górny M, Sokołowska-Jeżewicz M, Włodek L. Lipoic acid as a possible pharmacological source of hydrogen sulfide/sulfane sulfur. Molecules. 2017;22(3):388.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Lin CC, Kurashige M, Liu Y, Terabayashi T, Ishimoto Y, Wang T, Choudhary V, et al. A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Sci Rep. 2018;8(1):2743.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Ishimoto Y, Inagi R, Yoshihara D, Kugita M, Nagao S, Shimizu A, Takeda N, Wake M, Honda K, Zhou J, Nangaku M. Mitochondrial abnormality facilitates cyst formation in autosomal dominant polycystic kidney disease. Mol Cell Biol. 2017;37(24):e00337–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang L, Wu CG, Fang CQ, Gao J, Liu YZ, Chen Y, Chen YN, Xu ZG. The protective effect of α-lipoic acid on mitochondria in the kidney of diabetic rats. Int J Clin Exp Med. 2013;6(2):90–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Dugbartey .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dugbartey, G.J. (2023). Hydrogen Sulfide as a Potential Future Therapy for Chronic Kidney Disease, Hyperhomocysteinemia, and Management of Polycystic Kidney Disease. In: Hydrogen Sulfide in Kidney Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-44041-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44041-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44040-3

  • Online ISBN: 978-3-031-44041-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics