Skip to main content

Auxiliary-Domain Learning for a Functional Prediction of Glaucoma Progression

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2023)

Abstract

An accurate and early prediction of a patient’s glaucoma progression can give ophthalmologists insight on how to mitigate the ramifications of the disease before they experience irreversible visual field loss or blindness. Our paper introduces an auxiliary-domain learning framework that trains a convolutional neural network to predict glaucoma progression (main task) and utilizes auxiliary tasks during training, including prediction of the patient age, mean deviation, and optical coherence tomography (OCT) data to improve its accuracy on the main task. The modalities of optic disc photographs and OCT data are often not utilized jointly due to costly machinery. However, we exploit informative features in the OCT, age, and mean deviation data as our learning objective to alleviate the need to acquire the data in clinical deployment. We compared baseline models with no auxiliary outputs to the ones built using auxiliary tasks, and observed a 6.5% increase in Area Under the Receiver Operating Characteristic Curve (AUC-ROC) in the final auxiliary-domain model (91.3 ± 2.6%) compared to the baseline (84.8 ± 4.9%). This study demonstrates the utility of auxiliary tasks when training ophthalmological models by leveraging important patient data that is difficult to acquire during training, even when it is not available as part of the model’s deployment in routine clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quigley, H.A., Broman, A.T.: The number of people with glaucoma worldwide in 2010 and 2020 (2006)

    Google Scholar 

  2. Allison, K., Patel, D., Alabi, O.: Epidemiology of glaucoma: the past, present, and predictions for the future (2020)

    Google Scholar 

  3. Ting, D.S., et al.: Deep learning in ophthalmology: the technical and clinical considerations. Prog. Retin. Eye Res. 72, 100759 (2019)

    Article  Google Scholar 

  4. Abràmoff, M.D., et al.: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest. Ophthalmol. Visual Sci. 57, 5200–5206 (2016)

    Article  Google Scholar 

  5. Shibata, N., et al.: Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci. Rep. 8, 14665 (2018)

    Article  Google Scholar 

  6. Christopher, M., et al.: Deep learning approaches predict glaucomatous visual field damage from oct optic nerve head EN face images and retinal nerve fiber layer thickness maps. Ophthalmology 127, 346–356 (2020)

    Article  Google Scholar 

  7. Dixit, A., Yohannan, J., Boland, M.V.: Assessing glaucoma progression using machine learning trained on longitudinal visual field and clinical data. Ophthalmology 128, 1016–1026 (2021)

    Article  Google Scholar 

  8. Hemelings, R., Elen, B., Barbosa-Breda, J., Blaschko, M.B., De Boever, P., Stalmans, I.: Deep learning on fundus images detects glaucoma beyond the optic disc. Sci. Rep. 11, 20313 (2021)

    Article  Google Scholar 

  9. Sun, Y., Zhu, L., Wang, G., Zhao, F.: Multi-input convolutional neural network for flower grading. J. Electr. Comput. Eng. 2017, 9240407 (2017)

    Google Scholar 

  10. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2, Lille (2015)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  13. Caruana, R.: Multitask learning: a knowledge-based source of inductive bias1. In: Proceedings of the Tenth International Conference on Machine Learning, pp. 41–48. Citeseer (1993)

    Google Scholar 

  14. Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy labels. CoRR abs/1805.07836 (2018)

    Google Scholar 

  15. Nouri-Mahdavi, K., Mohammadzadeh, V., Rabiolo, A., Edalati, K., Caprioli, J., Yousefi, S.: Prediction of visual field progression from oct structural measures in moderate to advanced glaucoma. Am. J. Ophthalmol. 226, 172–181 (2021)

    Article  Google Scholar 

  16. Sarica, A., Cerasa, A., Quattrone, A.: Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 9, 329 (2017)

    Article  Google Scholar 

  17. Lo, C.S., Wang, C.M.: Support vector machine for breast MR image classification. Comput. Math. Appl. 64, 1153–1162 (2012)

    Article  MATH  Google Scholar 

  18. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  19. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13, 18–28 (1998)

    Article  Google Scholar 

  20. Rish, I., et al.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

    Google Scholar 

  21. Kapishnikov, A., Bolukbasi, T., Viégas, F., Terry, M.: Xrai: better attributions through regions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4948–4957 (2019)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015)

    Google Scholar 

  23. Jin, K., et al.: Fives: a fundus image dataset for artificial intelligence based vessel segmentation. Sci. Data 9, 475 (2022)

    Article  MathSciNet  Google Scholar 

  24. Orlando, J.I., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  25. Mohammed, R., Rawashdeh, J., Abdullah, M.: Machine learning with oversampling and undersampling techniques: overview study and experimental results. In: 11th International Conference on Information and Communication Systems (ICICS). IEEE 2020, pp. 243–248 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Scalzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, S. et al. (2023). Auxiliary-Domain Learning for a Functional Prediction of Glaucoma Progression. In: Antony, B., Chen, H., Fang, H., Fu, H., Lee, C.S., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2023. Lecture Notes in Computer Science, vol 14096. Springer, Cham. https://doi.org/10.1007/978-3-031-44013-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44013-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44012-0

  • Online ISBN: 978-3-031-44013-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics