Skip to main content

Differentiable Beamforming for Ultrasound Autofocusing

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Ultrasound images are distorted by phase aberration arising from local sound speed variations in the tissue, which lead to inaccurate time delays in beamforming and loss of image focus. Whereas state-of-the-art correction approaches rely on simplified physical models (e.g. phase screens), we propose a novel physics-based framework called differentiable beamforming that can be used to rapidly solve a wide range of imaging problems. We demonstrate the generalizability of differentiable beamforming by optimizing the spatial sound speed distribution in a heterogeneous imaging domain to achieve ultrasound autofocusing using a variety of physical constraints based on phase shift minimization, speckle brightness, and coherence maximization. The proposed method corrects for the effects of phase aberration in both simulation and in-vivo cases by improving image focus while simultaneously providing quantitative speed-of-sound distributions for tissue diagnostics, with accuracy improvements with respect to previously published baselines. Finally, we provide a broader discussion of applications of differentiable beamforming in other ultrasound domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/google/jax.

  2. 2.

    https://github.com/waltsims/dbua.

References

  1. Ali, R., et al.: Aberration correction in diagnostic ultrasound: a review of the prior field and current directions. Z. Med. Phys. (2023). https://doi.org/10.1016/j.zemedi.2023.01.003

    Article  Google Scholar 

  2. Ali, R., Herickhoff, C.D., Hyun, D., Dahl, J.J., Bottenus, N.: Extending retrospective encoding for robust recovery of the multistatic data set. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(5), 943–956 (2019)

    Article  Google Scholar 

  3. Bradbury, J., et al.: JAX: composable transformations of Python+NumPy programs (2018). http://github.com/google/jax

  4. Feigin, M., Freedman, D., Anthony, B.W.: A deep learning framework for single-sided sound speed inversion in medical ultrasound. IEEE Trans. Biomed. Eng. 67(4), 1142–1151 (2020)

    Article  Google Scholar 

  5. Hewish, A.: The diffraction of radio waves in passing through a phase-changing ionosphere. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 209(1096), 81–96 (1951)

    Google Scholar 

  6. Hollman, K., Rigby, K., O’donnell, M.: Coherence factor of speckle from a multi-row probe. In: Proceedings 1999 IEEE Ultrasonics Symposium (Cat. No. 99CH37027), vol. 2, pp. 1257–1260. IEEE (1999)

    Google Scholar 

  7. Hyun, D., Li, Y.L., Steinberg, I., Jakovljevic, M., Klap, T., Dahl, J.J.: An open source GPU-based beamformer for real-time ultrasound imaging and applications. In: 2019 IEEE International Ultrasonics Symposium (IUS), pp. 20–23. IEEE (2019)

    Google Scholar 

  8. ITISFoundation: Tissue properties database v4–1 (2022). https://doi.org/10.13099/VIP21000-04-01

  9. Jakovljevic, M., Hsieh, S., Ali, R., Chau Loo Kung, G., Hyun, D., Dahl, J.J.: Local speed of sound estimation in tissue using pulse-echo ultrasound: model-based approach. J. Acoust. Soc. Am. 144, 254–266 (2018)

    Article  Google Scholar 

  10. Jaros, J., Rendell, A.P., Treeby, B.E.: Full-wave nonlinear ultrasound simulation on distributed clusters with applications in high-intensity focused ultrasound. Int. J. High Perform. Comput. Appl. 30(2), 137–155 (2016)

    Article  Google Scholar 

  11. Mallart, R., Fink, M.: Adaptive focusing in scattering media through sound-speed inhomogeneities: the van Cittert Zernike approach and focusing criterion. J. Acoust. Soc. Am. 96(6), 3721–3732 (1994)

    Article  Google Scholar 

  12. Ng, G.C., Freiburger, P.D., Walker, W.F., Trahey, G.E.: A speckle target adaptive imaging technique in the presence of distributed aberrations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(1), 140–151 (1997)

    Article  Google Scholar 

  13. Nock, L., Trahey, G.E., Smith, S.W.: Phase aberration correction in medical ultrasound using speckle brightness as a quality factor. J. Acoust. Soc. Am. 85(5), 1819–1833 (1989)

    Article  Google Scholar 

  14. Sanabria, S.J., Brevett, T., Ali, R., Telichko, A., Dahl, J.: Direct speed of sound reconstruction from full-synthetic aperture data with dual regularization. In: 2022 IEEE International Ultrasonics Symposium (IUS), pp. 1–4 (2022)

    Google Scholar 

  15. Sanabria, S.J., Ozkan, E., Rominger, M., Goksel, O.: Spatial domain reconstruction for imaging speed-of-sound with pulse-echo ultrasound: simulation and in vivo study. Phys. Med. Biol. 63(21), 215015 (2018)

    Article  Google Scholar 

  16. Simson, W.A., Paschali, M., Sideri-Lampretsa, V., Navab, N., Dahl, J.J.: Investigating pulse-echo sound speed estimation in breast ultrasound with deep learning. arXiv preprint: arXiv:2302.03064 (2023)

  17. Stähli, P., Kuriakose, M., Frenz, M., Jaeger, M.: Improved forward model for quantitative pulse-echo speed-of-sound imaging. Ultrasonics 108, 106168 (2020)

    Article  Google Scholar 

  18. Vishnevskiy, V., Sanabria, S.J., Goksel, O.: Image reconstruction via variational network for real-time hand-held sound-speed imaging. In: Knoll, F., Maier, A., Rueckert, D. (eds.) MLMIR 2018. LNCS, vol. 11074, pp. 120–128. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00129-2_14

    Chapter  Google Scholar 

  19. Wild, A., Hobbs, R., Frenje, L.: Modelling complex media: an introduction to the phase-screen method. Phys. Earth Planet. Inter. 120(3), 219–225 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institute of Biomedical Imaging and Bioengineering under Grant K99-EB032230 and Grant R01-EB027100, as well as the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1656518.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Simson .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simson, W., Zhuang, L., Sanabria, S.J., Antil, N., Dahl, J.J., Hyun, D. (2023). Differentiable Beamforming for Ultrasound Autofocusing. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics