Skip to main content

TractCloud: Registration-Free Tractography Parcellation with a Novel Local-Global Streamline Point Cloud Representation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Diffusion MRI tractography parcellation classifies streamlines into anatomical fiber tracts to enable quantification and visualization for clinical and scientific applications. Current tractography parcellation methods rely heavily on registration, but registration inaccuracies can affect parcellation and the computational cost of registration is high for large-scale datasets. Recently, deep-learning-based methods have been proposed for tractography parcellation using various types of representations for streamlines. However, these methods only focus on the information from a single streamline, ignoring geometric relationships between the streamlines in the brain. We propose TractCloud, a registration-free framework that performs whole-brain tractography parcellation directly in individual subject space. We propose a novel, learnable, local-global streamline representation that leverages information from neighboring and whole-brain streamlines to describe the local anatomy and global pose of the brain. We train our framework on a large-scale labeled tractography dataset, which we augment by applying synthetic transforms including rotation, scaling, and translations. We test our framework on five independently acquired datasets across populations and health conditions. TractCloud significantly outperforms several state-of-the-art methods on all testing datasets. TractCloud achieves efficient and consistent whole-brain white matter parcellation across the lifespan (from neonates to elderly subjects, including brain tumor patients) without the need for registration. The robustness and high inference speed of TractCloud make it suitable for large-scale tractography data analysis. Our project page is available at https://tractcloud.github.io/.

This work was supported by the following NIH grants: R01MH125860, R01MH119222, R01MH132610, R01MH074794, and R01NS125781.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astolfi, P., et al.: Tractogram filtering of anatomically non-plausible fibers with geometric deep learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 291–301. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_29

    Chapter  Google Scholar 

  2. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)

    Article  Google Scholar 

  3. Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017)

    Google Scholar 

  4. Chen, Y., et al.: White matter tracts are point clouds: neuropsychological score prediction and critical region localization via geometric deep learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science. vol. 13431. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_17

  5. Chen, Y., et al.: Deep fiber clustering: anatomically informed fiber clustering with self-supervised deep learning for fast and effective tractography parcellation. Neuroimage 273, 120086 (2023)

    Article  Google Scholar 

  6. Chen, Y., et al.: TractGeoNet: A geometric deep learning framework for pointwise analysis of tract microstructure to predict language assessment performance. arXiv 2307.0398 (2023)

    Google Scholar 

  7. Chen, Y., et al.: Deep fiber clustering: anatomically informed unsupervised deep learning for fast and effective white matter parcellation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 497–507. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_47

    Chapter  Google Scholar 

  8. Cousineau, M., et al.: A test-retest study on parkinson’s PPMI dataset yields statistically significant white matter fascicles. Neuroimage Clin. 16, 222–233 (2017)

    Article  Google Scholar 

  9. Edwards, A.D., et al.: The developing human connectome project neonatal data release. Front. Neurosci. 16, 886772 (2022)

    Article  Google Scholar 

  10. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  11. Garyfallidis, E., et al.: QuickBundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)

    Article  Google Scholar 

  12. Garyfallidis, E., et al.: Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170, 283–295 (2018)

    Article  Google Scholar 

  13. Garyfallidis, E., Ocegueda, O., Wassermann, D., Descoteaux, M.: Robust and efficient linear registration of white-matter fascicles in the space of streamlines. Neuroimage 117, 124–140 (2015)

    Article  Google Scholar 

  14. Gupta, V., Thomopoulos, S.I., Rashid, F.M., Thompson, P.M.: FiberNET: an ensemble deep learning framework for clustering white matter fibers. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 548–555. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_63

    Chapter  Google Scholar 

  15. Kumaralingam, L., Thanikasalam, K., Sotheeswaran, S., Mahadevan, J., Ratnarajah, N.: Segmentation of whole-brain tractography: a deep learning algorithm based on 3D raw curve points. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science. vol. 13431. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_18

  16. Legarreta, J.H., et al.: Filtering in tractography using autoencoders (FINTA). Med. Image Anal. 72, 102126 (2021)

    Article  Google Scholar 

  17. Legarreta, J.H., et al.: Clustering in tractography using autoencoders (CINTA). In: Computational Diffusion MRI, pp. 125–136 (2022)

    Google Scholar 

  18. Li, S., et al.: DeepRGVP: A novel Microstructure-Informed supervised contrastive learning framework for automated identification of the retinogeniculate pathway using dMRI tractography. In: ISBI (2023)

    Google Scholar 

  19. Liu, F., et al.: DeepBundle: fiber bundle parcellation with graph convolution neural networks. In: Graph Learning in Medical Imaging, pp. 88–95 (2019)

    Google Scholar 

  20. Liu, W., Lu, Q., Zhuo, Z., Liu, Y., Ye, C.: One-shot segmentation of novel white matter tracts via extensive data augmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science. vol. 13431. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_13

  21. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: a simple residual MLP framework. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  22. Malcolm, J.G., et al.: Filtered multitensor tractography. IEEE Trans. Med. Imaging 29(9), 1664–1675 (2010)

    Article  Google Scholar 

  23. Marek, K., et al.: The parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011)

    Article  Google Scholar 

  24. Ngattai Lam, P.D., et al.: TRAFIC: Fiber tract classification using deep learning. Proc. SPIE Int. Soc. Opt. Eng. 10574, 1057412 (2018)

    Google Scholar 

  25. Norton, I., et al.: SlicerDMRI: open source diffusion MRI software for brain cancer research. Cancer Res. 77(21), e101–e103 (2017)

    Article  Google Scholar 

  26. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS, pp. 5105–5114 (2017)

    Google Scholar 

  27. Reddy, C.P., Rathi, Y.: Joint Multi-Fiber NODDI parameter estimation and tractography using the unscented information filter. Front. Neurosci. 10, 166 (2016)

    Article  Google Scholar 

  28. Román, C., et al.: Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data. Neuroimage 262, 119550 (2022)

    Article  Google Scholar 

  29. Siless, V., et al.: Registration-free analysis of diffusion MRI tractography data across subjects through the human lifespan. Neuroimage 214, 116703 (2020)

    Article  Google Scholar 

  30. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  31. Volkow, N.D., et al.: The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018)

    Article  Google Scholar 

  32. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 1–12 (2019)

    Article  Google Scholar 

  33. Wang, Z., et al.: Accurate corresponding fiber tract segmentation via FiberGeoMap learner. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 143–152 (2022)

    Google Scholar 

  34. Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg - fast and accurate white matter tract segmentation. Neuroimage 183, 239–253 (2018)

    Article  Google Scholar 

  35. Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: learning curves for point clouds shape analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  36. Xu, H., et al.: A registration- and uncertainty-based framework for white matter tract segmentation with only one annotated subject. In: ISBI (2023)

    Google Scholar 

  37. Xu, H., et al.: Objective detection of eloquent axonal pathways to minimize postoperative deficits in pediatric epilepsy surgery using diffusion tractography and convolutional neural networks. IEEE Trans. Med. Imaging 38(8), 1910–1922 (2019)

    Google Scholar 

  38. Xue, T., et al.: SupWMA: Consistent and efficient tractography parcellation of superficial white matter with deep learning. In: ISBI (2022)

    Google Scholar 

  39. Xue, T., et al.: Superficial white matter analysis: an efficient point-cloud-based deep learning framework with supervised contrastive learning for consistent tractography parcellation across populations and dMRI acquisitions. Med. Image Anal. 85, 102759 (2023)

    Article  Google Scholar 

  40. Yan, X., et al.: PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  41. Yu, J., et al.: 3D medical point transformer: Introducing convolution to attention networks for medical point cloud analysis. arXiv 2112.04863 (2021)

    Google Scholar 

  42. Zhang, F., et al.: An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. Neuroimage 179, 429–447 (2018)

    Article  Google Scholar 

  43. Zhang, F., et al.: Test-retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering. Hum. Brain Mapp. 40(10), 3041–3057 (2019)

    Article  Google Scholar 

  44. Zhang, F., et al.: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation. Med. Image Anal. 65, 101761 (2020)

    Article  Google Scholar 

  45. Zhang, F., et al.: Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. Neuroimage 249, 118870 (2022)

    Article  Google Scholar 

  46. Zhao, H., et al.: Point transformer. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Zhang or Lauren J. O’Donnell .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 369 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, T. et al. (2023). TractCloud: Registration-Free Tractography Parcellation with a Novel Local-Global Streamline Point Cloud Representation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics