Skip to main content

DeepGraphDMD: Interpretable Spatio-Temporal Decomposition of Non-linear Functional Brain Network Dynamics

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14227))

  • 2571 Accesses

Abstract

Functional brain dynamics is supported by parallel and overlapping functional network modes that are associated with specific neural circuits. Decomposing these network modes from fMRI data and finding their temporal characteristics is challenging due to their time-varying nature and the non-linearity of the functional dynamics. Dynamic Mode Decomposition (DMD) algorithms have been quite popular for solving this decomposition problem in recent years. In this work, we apply GraphDMD—an extension of the DMD for network data—to extract the dynamic network modes and their temporal characteristics from the fMRI time series in an interpretable manner. GraphDMD, however, regards the underlying system as a linear dynamical system that is sub-optimal for extracting the network modes from non-linear functional data. In this work, we develop a generalized version of the GraphDMD algorithm—DeepGraphDMD—applicable to arbitrary non-linear graph dynamical systems. DeepGraphDMD is an autoencoder-based deep learning model that learns Koopman eigenfunctions for graph data and embeds the non-linear graph dynamics into a latent linear space. We show the effectiveness of our method in both simulated data and the HCP resting-state fMRI data. In the HCP data, DeepGraphDMD provides novel insights into cognitive brain functions by discovering two major network modes related to fluid and crystallized intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/mturja-vf-ic-bd/DeepGraphDMD.git.

  2. 2.

    https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf.

  3. 3.

    sklearn.decomposition.PCA.

  4. 4.

    sklearn.decomposition.FastICA.

  5. 5.

    https://mathlab.github.io/PyDMD/dmd.html.

References

  1. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. J. Mach. Learn. Res. 6(46), 1345–1382 (2005). http://jmlr.org/papers/v6/banerjee05a.html

  2. Casorso, J., Kong, X., Chi, W., Van De Ville, D., Yeo, B.T., Liégeois, R.: Dynamic mode decomposition of resting-state and task fMRI. NeuroImage 194, 42–54 (2019). https://doi.org/10.1016/j.neuroimage.2019.03.019. https://www.sciencedirect.com/science/article/pii/S1053811919301922

  3. Fox, E., Sudderth, E., Jordan, M., Willsky, A.: Nonparametric Bayesian learning of switching linear dynamical systems. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21. Curran Associates, Inc. (2008). https://proceedings.neurips.cc/paper_files/paper/2008/file/950a4152c2b4aa3ad78bdd6b366cc179-Paper.pdf

  4. Fujii, K., Takeishi, N., Hojo, M., Inaba, Y., Kawahara, Y.: Physically-interpretable classification of biological network dynamics for complex collective motions. Sci. Rep. 10 (2020). https://doi.org/10.1038/s41598-020-58064-w

  5. Gao, Y., Archer, E.W., Paninski, L., Cunningham, J.P.: Linear dynamical neural population models through nonlinear embeddings. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016). https://proceedings.neurips.cc/paper_files/paper/2016/file/76dc611d6ebaafc66cc0879c71b5db5c-Paper.pdf

  6. He, B.J.: Robust, transient neural dynamics during conscious perception. Trends Cogn. Sci. 22(7), 563–565 (2018). https://doi.org/10.1016/J.TICS.2018.04.005. https://pubmed.ncbi.nlm.nih.gov/29764721/

  7. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  8. Ikeda, S., Kawano, K., Watanabe, S., Yamashita, O., Kawahara, Y.: Predicting behavior through dynamic modes in resting-state fMRI data. NeuroImage 247, 118801 (2022). https://doi.org/10.1016/j.neuroimage.2021.118801. https://www.sciencedirect.com/science/article/pii/S1053811921010727

  9. Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. U.S.A. 17(5), 315 (1931). https://doi.org/10.1073/PNAS.17.5.315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076052/

  10. Krishnan, R.G., Shalit, U., Sontag, D.A.: Structured inference networks for nonlinear state space models. In: AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  11. Kunert-Graf, J.M., Eschenburg, K.M., Galas, D.J., Kutz, J.N., Rane, S.D., Brunton, B.W.: Extracting reproducible time-resolved resting state networks using dynamic mode decomposition. Front. Comput. Neurosci. 13 (2019). https://doi.org/10.3389/fncom.2019.00075. https://www.frontiersin.org/articles/10.3389/fncom.2019.00075

  12. Liégeois, R., et al.: Resting brain dynamics at different timescales capture distinct aspects of human behavior. Nat. Commun. 10(1), 2317 (2019)

    Article  Google Scholar 

  13. Linderman, S., Johnson, M., Miller, A., Adams, R., Blei, D., Paninski, L.: Bayesian learning and inference in recurrent switching linear dynamical systems. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 914–922. PMLR (2017). https://proceedings.mlr.press/v54/linderman17a.html

  14. Lusch, B., Nathan Kutz, J., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9, 4950 (2018)

    Article  Google Scholar 

  15. McKeown, M.J., et al.: Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 6(3), 160–188 (1998)

    Article  Google Scholar 

  16. Osada, T., et al.: Parallel cognitive processing streams in human prefrontal cortex: parsing areal-level brain network for response inhibition. Cell Rep. 36(12), 109732 (2021). https://doi.org/10.1016/j.celrep.2021.109732. https://www.sciencedirect.com/science/article/pii/S2211124721011815

  17. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7. https://www.sciencedirect.com/science/article/pii/0377042787901257

  18. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seitzman, B.A., et al.: A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. NeuroImage 206, 116290 (2020). https://doi.org/10.1016/j.neuroimage.2019.116290. https://www.sciencedirect.com/science/article/pii/S105381191930881X

  20. Sigman, M., Dehaene, S.: Brain mechanisms of serial and parallel processing during dual-task performance. J. Neurosci. 28(30), 7585–7598 (2008)

    Article  Google Scholar 

  21. Sussillo, D., Jozefowicz, R., Abbott, L., Pandarinath, C.: LFADS - latent factor analysis via dynamical systems (2016)

    Google Scholar 

  22. Takeishi, N., Kawahara, Y., Yairi, T.: Learning Koopman invariant subspaces for dynamic mode decomposition. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 1130–1140. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  23. Turja, M.A., Wu, G., Yang, D., Styner, M.A.: Learning the latent heat diffusion process through structural brain network from longitudinal \(\beta \)-amyloid data. In: Heinrich, M., Dou, Q., de Bruijne, M., Lellmann, J., Schläfer, A., Ernst, F. (eds.) Proceedings of the Fourth Conference on Medical Imaging with Deep Learning. Proceedings of Machine Learning Research, vol. 143, pp. 761–773. PMLR (2021). https://proceedings.mlr.press/v143/turja21a.html

  24. Turja, M.A., Zsembik, L.C.P., Wu, G., Styner, M.: Constructing consistent longitudinal brain networks by group-wise graph learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 654–662. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_73

    Chapter  Google Scholar 

  25. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  26. Viviani, R., Grön, G., Spitzer, M.: Functional principal component analysis of fMRI data. Hum. Brain Mapp. 24(2), 109–129 (2005)

    Article  Google Scholar 

  27. Xiao, J., et al.: A spatio-temporal decomposition framework for dynamic functional connectivity in the human brain. NeuroImage 263, 119618 (2022). https://doi.org/10.1016/j.neuroimage.2022.119618. https://www.sciencedirect.com/science/article/pii/S1053811922007339

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Asadullah Turja .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2436 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turja, M.A., Styner, M., Wu, G. (2023). DeepGraphDMD: Interpretable Spatio-Temporal Decomposition of Non-linear Functional Brain Network Dynamics. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics