Skip to main content

A Modulatory Elongated Model for Delineating Retinal Microvasculature in OCTA Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

  • 2868 Accesses

Abstract

Robust delineation of retinal microvasculature in optical coherence tomography angiography (OCTA) images remains a challenging task, particularly in handling the weak continuity of vessels, low visibility of capillaries, and significant noise interferences. This paper introduces a modulatory elongated model to overcome these difficulties by exploiting the facilitatory and inhibitory interactions exhibited by the contextual influences for neurons in the primary visual cortex. We construct the receptive field of the neurons by an elongated representation, which encodes the underlying profile of vasculature structures, elongated-like patterns, in an anisotropic neighborhood. An annular function is formed to capture the contextual influences presented in the surrounding region outside the neuron support and provide an automatic tuning of contextual information. The proposed modulatory method incorporates the elongated responses with the contextual influences to produce spatial coherent responses for delineating microvasculature features more distinctively from their background regions. Experimental evaluation on clinical retinal OCTA images shows the effectiveness of the proposed model in attaining a promising performance, outperforming the state-of-the-art vessel delineation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kashani, A.H., et al.: Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog. Retin. Eye Res. 60, 66–100 (2017)

    Article  Google Scholar 

  2. Ma, Y., et al.: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans. Med. Imaging 40(3), 928–939 (2021)

    Article  MathSciNet  Google Scholar 

  3. Zhang, J., et al.: 3D shape modeling and analysis of retinal microvasculature in OCT-angiography images. IEEE Trans. Med. Imaging 39(5), 1335–1346 (2020)

    Article  Google Scholar 

  4. Yoon, S.P., et al.: Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants. Ophthalmol. Retina 3(6), 489–499 (2019)

    Article  Google Scholar 

  5. Vadalà, M., Castellucci, M., Guarrasi, G., et al.: Retinal and choroidal vasculature changes associated with chronic kidney disease. Graefe’s Arch. Clin. Exp. Ophthalmol. 257, 1687–1698 (2019)

    Article  Google Scholar 

  6. Li, M., et al.: Image projection network: 3D to 2D image segmentation in OCTA images. IEEE Trans. Med. Imaging 39(11), 3343–3354 (2020)

    Article  Google Scholar 

  7. Mou, L., et al.: CS-Net: channel and spatial attention network for curvilinear structure segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-780

  8. Yousefi, S., Liu, T., Wang, R.K.: Segmentation and quantification of blood vessels for OCT-based micro-angiograms using hybrid shape/intensity compounding. Microvasc. Res. 97, 37–46 (2015)

    Article  Google Scholar 

  9. Gao, S.S., et al.: Compensation for reflectance variation in vessel density quantification by optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 57(10), 4485–4492 (2016)

    Article  Google Scholar 

  10. Strisciuglio, N., Azzopardi, G., Petkov, N.: Robust inhibition-augmented operator for delineation of curvilinear structures. IEEE Trans. Image Process. 28(12), 5852–5866 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Obara, B., Fricker, M., Gavaghan, D., Grau, V.: Contrast-independent curvilinear structure detection in biomedical images. IEEE Trans. Image Process. 21(5), 2572–2581 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Annunziata, R., Kheirkhah, A., Hamrah, P., Trucco, E.: Scale and curvature invariant ridge detector for tortuous and fragmented structures. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 588–595. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_70

    Chapter  Google Scholar 

  13. Jerman, T., Pernuš, F., Likar, B., Špiclin, Ž: Enhancement of vascular structures in 3D and 2D angiographic images. IEEE Trans. Med. Imaging 35(9), 2107–2118 (2016)

    Article  Google Scholar 

  14. Alhasson, H.F., Alharbi, S.S., Obara, B.: 2D and 3D vascular structures enhancement via multiscale fractional anisotropy tensor. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 365–374. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_26

    Chapter  Google Scholar 

  15. Sazak, Ç., Nelson, C.J., Obara, B.: The multiscale bowler-hat transform for blood vessel enhancement in retinal images. Pattern Recogn. 88, 739–750 (2019)

    Article  Google Scholar 

  16. Zipser, K., Lamme, V., Schiller, P.: Contextual modulation in primary visual cortex. J. Neurosci. 16(22), 7376–7389 (1996)

    Article  Google Scholar 

  17. Li, C., Li, W.: Extensive integration field beyond the classical receptive field of cat’s striate cortical neurons – classification and tuning properties. Vis. Res. 34(18), 2337–2355 (1994)

    Article  Google Scholar 

  18. Rossi, A., Desimone, R., Ungerleider, L.: Contextual modulation in primary visual cortex of macaques. J. Neurosci. 21(5), 1698–1709 (2001)

    Article  Google Scholar 

  19. Zhang, W., Sun, C.: Corner detection using second-order generalized Gaussian directional derivative representations. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1213–1224 (2021)

    Article  Google Scholar 

  20. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour and boundary detection improved by surround suppression of texture edges. Image Vis. Comput. 22(8), 609–622 (2004)

    Article  Google Scholar 

  21. Kapadia, M., Westheimer, G., Gilbert, C.: Spatial distribution of contextual interactions in primary visual cortex and in visual perception. J. Neurophysiol. 84(4), 2048–2062 (2000)

    Article  Google Scholar 

  22. Wang, C., Bardy, C., Huang, J., FitzGibbon, T., Dreher, B.: Contrast dependence of center and surround integration in primary visual cortex of the cat. J. Vis. 9(1), 1–15 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Challoob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Challoob, M., Gao, Y., Busch, A., Zhang, W. (2023). A Modulatory Elongated Model for Delineating Retinal Microvasculature in OCTA Images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics