Skip to main content

Optimizing the 3D Plate Shape for Proximal Humerus Fractures

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

To treat bone fractures, implant manufacturers produce 2D anatomically contoured plates. Unfortunately, existing plates only fit a limited segment of the population and/or require manual bending during surgery. Patient-specific implants would provide major benefits such as reducing surgery time and improving treatment outcomes but they are still rare in clinical practice. In this work, we propose a patient-specific design for the long helical 2D PHILOS (Proximal Humeral Internal Locking System) plate, used to treat humerus shaft fractures. Our method automatically creates a custom plate from a CT scan of a patient’s bone. We start by designing an optimal plate on a template bone and, with an anatomy-aware registration method, we transfer this optimal design to any bone. In addition, for an arbitrary bone, our method assesses if a given plate is fit for surgery by automatically positioning it on the bone. We use this process to generate a compact set of plate shapes capable of fitting the bones within a given population. This plate set can be pre-printed in advance and readily available, removing the fabrication time between the fracture occurrence and the surgery. Extensive experiments on ex-vivo arms and 3D-printed bones show that the generated plate shapes (personalized and plate-set) faithfully match the individual bone anatomy and are suitable for clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://humerusplate.is.tue.mpg.de.

References

  1. White, T.D., Folkens, P.A.: The human bone manual. Elsevier (2005)

    Google Scholar 

  2. Goyal, K.S., Skalak, A.S., Marcus, R.E., Vallier, H.A., Cooperman, D.R.: Analysis of anatomic periarticular tibial plate fit on normal adults. Clin. Orthop. Relat. Res. 1976–2007(461), 245–257 (2007)

    Article  Google Scholar 

  3. Schmutz, B., Rathnayaka, K., Albrecht, T.: Anatomical fitting of a plate shape directly derived from a 3D statistical bone model of the tibia. J. Clin. Orthopaed. Trauma 10, S236–S241 (2019)

    Article  Google Scholar 

  4. Kozic, N., et al.: Optimisation of orthopaedic implant design using statistical shape space analysis based on level sets. Med. Image Anal. 14(3), 265–275 (2010)

    Article  Google Scholar 

  5. Hwang, J.H., Oh, J.K., Oh, C.W., Yoon, Y.C., Choi, H.W.: Mismatch of anatomically pre-shaped locking plate on Asian femurs could lead to malalignment in the minimally invasive plating of distal femoral fractures: a cadaveric study. Arch. Orthop. Trauma Surg. 132(1), 51–56 (2012)

    Article  Google Scholar 

  6. Bou-Sleiman, H., Ritacco, L.E., Nolte, L.-P., Reyes, M.: Minimization of intra-operative shaping of Orthopaedic fixation plates: a population-based design. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 409–416. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_50

    Chapter  Google Scholar 

  7. Schmutz, B., Wullschleger, M.E., Kim, H., Noser, H., Schütz, M.A.: Fit assessment of anatomic plates for the distal medial tibia. J. Orthop. Trauma 22(4), 258–263 (2008)

    Article  Google Scholar 

  8. Schmutz, B., Wullschleger, M.E., Noser, H., Barry, M., Meek, J., Schütz, M.A.: Fit optimisation of a distal medial tibia plate. Comput. Methods Biomech. Biomed. Engin. 14(04), 359–364 (2011)

    Article  Google Scholar 

  9. Harith, H., Schmutz, B., Malekani, J., Schuetz, M.A., Yarlagadda, P.K.: Can we safely deform a plate to fit every bone? Population-based fit assessment and finite element deformation of a distal tibial plate. Med. Eng. Phys. 38(3), 280–285 (2016)

    Article  Google Scholar 

  10. Carrillo, F., Vlachopoulos, L., Schweizer, A., Nagy, L., Snedeker, J., Fürnstahl, P.: A time saver: optimization approach for the fully automatic 3D planning of forearm osteotomies. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 488–496. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_55

    Chapter  Google Scholar 

  11. Wu, X., et al.: Preliminary exploration of a quantitative assessment index for the matching performance of anatomical bone plates using computer. J. Orthop. Surg. Res. 14(1), 1–8 (2019)

    Article  Google Scholar 

  12. Tkany, L., Hofstätter, B., Petersik, A., Miehling, J., Wartzack, S., Sesselmann, S.: New design process for anatomically enhanced osteosynthesis plates. J. Orthop. Res. 37(7), 1508–1517 (2019)

    Article  Google Scholar 

  13. Zenker, M., et al.: Quantifying osteosynthesis plate prominence-mathematical definitions and case study on a clavicle plate. Comput. Methods Biomech. Biomed. Eng. 25, 1–10 (2022)

    Google Scholar 

  14. Schulz, A.P., et al.: Evidence based development of a novel lateral fibula plate (variAx fibula) using a real CT bone data based optimization process during device development. Open Orthop. J. 6, 1–7 (2012)

    Article  Google Scholar 

  15. Gill, D.R., Torchia, M.E.: The spiral compression plate for proximal humeral shaft nonunion: a case report and description of a new technique. J. Orthop. Trauma 13(2), 141–144 (1999)

    Article  Google Scholar 

  16. Da Silva, T., Rummel, F., Knop, C., Merkle, T.: Comparing iatrogenic radial nerve lesions in humeral shaft fractures treated with helical or straight philos plates: a 10-year retrospective cohort study of 62 cases. Arch. Orthop. Trauma Surg. 140(12), 1931–1937 (2020)

    Article  Google Scholar 

  17. Petersik, A., et al.: A numeric approach for anatomic plate design. Injury 49, S96–S101 (2018)

    Article  Google Scholar 

  18. Meng, D., Keller, M., Boyer, E., Black, M., Pujades, S.: Learning a statistical full spine model from partial observations. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 122–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_10

    Chapter  Google Scholar 

  19. Eisenberger, M., Lahner, Z., Cremers, D.: Smooth shells: multi-scale shape registration with functional maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12265–12274 (2020)

    Google Scholar 

  20. Ahmad, M., Nanda, R., Bajwa, A., Candal-Couto, J., Green, S., Hui, A.: Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? Injury 38(3), 358–364 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the project CAMed (COMET K- Project 871132) which is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) and the Austrian Federal Ministry for Digital and Economic Affairs (BMDW) and the Styrian Business Promotion Agency (SFG). Michael J. Black (MJB) has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH. MJB’s research was performed solely at MPI. We thank Karoline Seibert at Hofer GmbH & Co KG, Fürstenfeld, Austria for the 3D printing of bones and plates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn Keller .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 192 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keller, M. et al. (2023). Optimizing the 3D Plate Shape for Proximal Humerus Fractures. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics