Skip to main content

Segmentation of Kidney Tumors on Non-Contrast CT Images Using Protuberance Detection Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

Abstract

Many renal cancers are incidentally found on non-contrast CT (NCCT) images. On contrast-enhanced CT (CECT) images, most kidney tumors, especially renal cancers, have different intensity values compared to normal tissues. However, on NCCT images, some tumors called isodensity tumors, have similar intensity values to the surrounding normal tissues, and can only be detected through a change in organ shape. Several deep learning methods which segment kidney tumors from CECT images have been proposed and showed promising results. However, these methods fail to capture such changes in organ shape on NCCT images. In this paper, we present a novel framework, which can explicitly capture protruded regions in kidneys to enable a better segmentation of kidney tumors. We created a synthetic mask dataset that simulates a protuberance, and trained a segmentation network to separate the protruded regions from the normal kidney regions. To achieve the segmentation of whole tumors, our framework consists of three networks. The first network is a conventional semantic segmentation network which extracts a kidney region mask and an initial tumor region mask. The second network, which we name protuberance detection network, identifies the protruded regions from the kidney region mask. Given the initial tumor region mask and the protruded region mask, the last network fuses them and predicts the final kidney tumor mask accurately. The proposed method was evaluated on a publicly available KiTS19 dataset, which contains 108 NCCT images, and showed that our method achieved a higher dice score of 0.615 (+0.097) and sensitivity of 0.721 (+0.103) compared to 3D-UNet. To the best of our knowledge, this is the first deep learning method that is specifically designed for kidney tumor segmentation on NCCT images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Estimated number of new cases in 2020, world, both sexes, all ages (excl. nmsc). https://gco.iarc.fr/today/online-analysis-table/. Accessed 27 Feb 2023

  2. Bradbury, J., et al.: JAX: composable transformations of Python+NumPy programs (2018). http://github.com/google/jax

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  5. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: Proceedings of International Conference on Learning Representations (2019)

    Google Scholar 

  6. Golts, A., Khapun, D., Shats, D., Shoshan, Y., Gilboa-Solomon, F.: An ensemble of 3D U-net based models for segmentation of kidney and masses in CT scans. In: Heller, N., Isensee, F., Trofimova, D., Tejpaul, R., Papanikolopoulos, N., Weight, C. (eds.) KiTS 2021. LNCS, vol. 13168, pp. 103–115. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98385-7_14

    Chapter  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the kits19 challenge. Med. Image Anal. 67, 101821 (2021)

    Article  Google Scholar 

  9. Heller, N., et al.: C4KC kits challenge kidney tumor segmentation dataset (2019)

    Google Scholar 

  10. Hennigan, T., Cai, T., Norman, T., Babuschkin, I.: Haiku: Sonnet for JAX (2020). http://github.com/deepmind/dm-haiku

  11. Hou, X., Chunmei, X., Li, F., Yang, N.: Cascaded semantic segmentation for kidney and tumor. Submissions to the 2019 Kidney Tumor Segmentation Challenge: KiTS19 (2019)

    Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2020)

    Article  Google Scholar 

  13. Isensee, F., Maier-Hein, K.: An attempt at beating the 3D U-NET. Submissions to the 2019 Kidney Tumor Segmentation Challenge: KiTS19 (2019)

    Google Scholar 

  14. Liu, J., Wang, S., Linguraru, M.G., Yao, J., Summers, R.M.: Computer-aided detection of exophytic renal lesions on non-contrast CT images. Med. Image Anal. 19(1), 15–29 (2015)

    Article  Google Scholar 

  15. Liu, J., Wang, S., Yao, J., Linguraru, M.G., Summers, R.M.: Manifold diffusion for exophytic kidney lesion detection on non-contrast CT images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 340–347. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_43

    Chapter  Google Scholar 

  16. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  17. Mu, G., Lin, Z., Han, M., Yao, G., Gao, Y.: Segmentation of kidney tumor by multi-resolution VB-Nets. Submissions to the 2019 Kidney Tumor Segmentation Challenge: KiTS19 (2019)

    Google Scholar 

  18. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  19. Pinsky, P.F., et al.: Incidental renal tumours on low-dose CT lung cancer screening exams. J. Med. Screen. 24(2), 104–109 (2017)

    Article  Google Scholar 

  20. Touijer, K., et al.: The expanding role of partial nephrectomy: a critical analysis of indications, results, and complications. Eur. Urol. 57(2), 214–222 (2010)

    Article  Google Scholar 

  21. Zhao, Z., Chen, H., Wang, L.: A coarse-to-fine framework for the 2021 kidney and kidney tumor segmentation challenge. In: Heller, N., Isensee, F., Trofimova, D., Tejpaul, R., Papanikolopoulos, N., Weight, C. (eds.) KiTS 2021. LNCS, vol. 13168, pp. 53–58. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98385-7_8

    Chapter  Google Scholar 

  22. Znaor, A., Lortet-Tieulent, J., Laversanne, M., Jemal, A., Bray, F.: International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol. 67(3), 519–530 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Hatsutani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hatsutani, T., Ichinose, A., Nakamura, K., Kitamura, Y. (2023). Segmentation of Kidney Tumors on Non-Contrast CT Images Using Protuberance Detection Network. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics