Skip to main content

Polar Eyeball Shape Net for 3D Posterior Ocular Shape Representation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

The shape of the posterior eyeball is a crucial factor in many clinical applications, such as myopia prevention, surgical planning, and disease screening. However, current shape representations are limited by their low resolution or small field of view, providing insufficient information for surgeons to make accurate decisions. This paper proposes a novel task of reconstructing complete 3D posterior shapes based on small-FOV OCT images and introduces a novel Posterior Eyeball Shape Network (PESNet) to accomplish this task. The proposed PESNet is designed with dual branches that incorporate anatomical information of the eyeball as guidance. To capture more detailed information, we introduce a Polar Voxelization Block (PVB) that transfers sparse input point clouds to a dense representation. Furthermore, we propose a Radius-wise Fusion Block (RFB) that fuses correlative hierarchical features from the two branches. Our qualitative results indicate that PESNet provides a well-represented complete posterior eyeball shape with a chamfer distance of 9.52, SSIM of 0.78, and Density of 0.013 on the self-made posterior ocular shape dataset. We also demonstrate the effectiveness of our model by testing it on patients’ data. Overall, our proposed PESNet offers a significant improvement over existing methods in accurately reconstructing the complete 3D posterior eyeball shape. This achievement has important implications for clinical applications.

J. Zhang and Y. Hu—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alamouti, B., Funk, J.: Retinal thickness decreases with age: an oct study. Br. J. Ophthalmol. 87(7), 899–901 (2003)

    Article  Google Scholar 

  2. Atchison, D.A., et al.: Eye shape in emmetropia and myopia. Investig. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004)

    Article  Google Scholar 

  3. Belghith, A., et al.: Structural change can be detected in advanced-glaucoma eyes. Investig. Ophthalmol. Vis. Sci. 57(9), OCT511–OCT518 (2016)

    Google Scholar 

  4. Bongratz, F., Rickmann, A.M., Pölsterl, S., Wachinger, C.: Vox2cortex: fast explicit reconstruction of cortical surfaces from 3D MRI scans with geometric deep neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20773–20783 (2022)

    Google Scholar 

  5. Brennan, N.A., Toubouti, Y.M., Cheng, X., Bullimore, M.A.: Efficacy in myopia control. Prog. Retin. Eye Res. 83, 100923 (2021)

    Article  Google Scholar 

  6. Ciller, C., et al.: Multi-channel MRI segmentation of eye structures and tumors using patient-specific features. PLoS ONE 12(3), e0173900 (2017)

    Article  Google Scholar 

  7. Ciller, C., et al.: Automatic segmentation of the eye in 3D magnetic resonance imaging: a novel statistical shape model for treatment planning of retinoblastoma. Int. J. Radiat. Oncol. Biol. Phys. 92(4), 794–802 (2015)

    Article  Google Scholar 

  8. Guo, X., et al.: Three-dimensional eye shape, myopic maculopathy, and visual acuity: the Zhongshan ophthalmic center-brien holden vision institute high myopia cohort study. Ophthalmology 124(5), 679–687 (2017)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Ishii, K., Iwata, H., Oshika, T.: Quantitative evaluation of changes in eyeball shape in emmetropization and myopic changes based on elliptic fourier descriptors. Investig. Ophthalmol. Vis. Sci. 52(12), 8585–8591 (2011)

    Article  Google Scholar 

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  12. Kim, Y.C., Moon, J.S., Park, H.Y.L., Park, C.K.: Three dimensional evaluation of posterior pole and optic nerve head in tilted disc. Sci. Rep. 8(1), 1–11 (2018)

    Google Scholar 

  13. Kuo, A.N., et al.: Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures. Am. J. Ophthalmol. 156(2), 304–311 (2013)

    Article  Google Scholar 

  14. Leshno, A., Mezad-Koursh, D., Ziv-Baran, T., Stolovitch, C.: A paired comparison study on refractive changes after strabismus surgery. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 21(6), 460–462 (2017)

    Article  Google Scholar 

  15. Liu, J., et al.: Planemvs: 3D plane reconstruction from multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8665–8675 (2022)

    Google Scholar 

  16. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NERF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  17. Miyake, M., et al.: Analysis of fundus shape in highly myopic eyes by using curvature maps constructed from optical coherence tomography. PLoS ONE 9(9), e107923 (2014)

    Article  Google Scholar 

  18. Moriyama, M., et al.: Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. Ophthalmology 118(8), 1626–1637 (2011)

    Article  Google Scholar 

  19. Palchunova, K., et al.: Precise retinal shape measurement by alignment error and eye model calibration. Opt. Rev. 29(3), 188–196 (2022)

    Article  Google Scholar 

  20. Park, Y., Kim, Y.C., Ahn, Y.J., Park, S.H., Shin, S.Y.: Morphological change of the posterior pole following the horizontal strabismus surgery with swept source optical coherence tomography. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  21. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  22. Rozema, J., Dankert, S., Iribarren, R., Lanca, C., Saw, S.M.: Axial growth and lens power loss at myopia onset in Singaporean children. Investig. Ophthalmol. Vis. Sci. 60(8), 3091–3099 (2019)

    Article  Google Scholar 

  23. Singh, K.D., Logan, N.S., Gilmartin, B.: Three-dimensional modeling of the human eye based on magnetic resonance imaging. Investig. Ophthalmol. Vis. Sci. 47(6), 2272–2279 (2006)

    Article  Google Scholar 

  24. Sun, L., Shao, W., Zhang, D., Liu, M.: Anatomical attention guided deep networks for ROI segmentation of brain MR images. IEEE Trans. Med. Imaging 39(6), 2000–2012 (2019)

    Article  Google Scholar 

  25. Tatewaki, Y., et al.: Morphological prediction of glaucoma by quantitative analyses of ocular shape and volume using 3-dimensional T2-weighted MR images. Sci. Rep. 9(1), 15148 (2019)

    Article  Google Scholar 

  26. Verkicharla, P.K., Mathur, A., Mallen, E.A., Pope, J.M., Atchison, D.A.: Eye shape and retinal shape, and their relation to peripheral refraction. Ophthalmic Physiol. Opt. 32(3), 184–199 (2012)

    Article  Google Scholar 

  27. Wang, Y.X., Panda-Jonas, S., Jonas, J.B.: Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: histology and clinical features. Prog. Retin. Eye Res. 83, 100933 (2021)

    Article  Google Scholar 

  28. Xiang, P., et al.: Snowflake point deconvolution for point cloud completion and generation with skip-transformer. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 6320–6338 (2022)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by General Program of National Natural Science Foundation of China (82272086 and 82102189), Guangdong Basic and Applied Basic Research Foundation (2021A1515012195), Shenzhen Stable Support Plan Program (20220815111736001 and 20200925174052004), and Agency for Science, Technology and Research (A*STAR) Advanced Manufacturing and Engineering (AME) Programmatic Fund (A20H4b0141) and Central Research Fund (CRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Hu , Mingming Yang or Jiang Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 486 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J. et al. (2023). Polar Eyeball Shape Net for 3D Posterior Ocular Shape Representation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics