Skip to main content

MedGen3D: A Deep Generative Framework for Paired 3D Image and Mask Generation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Acquiring and annotating sufficient labeled data is crucial in developing accurate and robust learning-based models, but obtaining such data can be challenging in many medical image segmentation tasks. One promising solution is to synthesize realistic data with ground-truth mask annotations. However, no prior studies have explored generating complete 3D volumetric images with masks. In this paper, we present MedGen3D, a deep generative framework that can generate paired 3D medical images and masks. First, we represent the 3D medical data as 2D sequences and propose the Multi-Condition Diffusion Probabilistic Model (MC-DPM) to generate multi-label mask sequences adhering to anatomical geometry. Then, we use an image sequence generator and semantic diffusion refiner conditioned on the generated mask sequences to produce realistic 3D medical images that align with the generated masks. Our proposed framework guarantees accurate alignment between synthetic images and segmentation maps. Experiments on 3D thoracic CT and brain MRI datasets show that our synthetic data is both diverse and faithful to the original data, and demonstrate the benefits for downstream segmentation tasks. We anticipate that MedGen3D’s ability to synthesize paired 3D medical images and masks will prove valuable in training deep learning models for medical imaging tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://adni.loni.usc.edu/

  2. https://structseg2019.grand-challenge.org/dataset/

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv: Arxiv-1701.07875 (2017)

  4. Baur, C., Albarqouni, S., Navab, N.: Melanogans: high resolution skin lesion synthesis with gans. arXiv preprint arXiv:1804.04338 (2018)

  5. Bermudez, C., Plassard, A.J., Davis, L.T., Newton, A.T., Resnick, S.M., Landman, B.A.: Learning implicit brain mri manifolds with deep learning. In: Medical Imaging: Image Processing. SPIE (2018)

    Google Scholar 

  6. Cardoso, M.J., et al.: Monai: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)

  7. Chen, X., et al.: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Radiother. Oncol. 160, 175–184 (2021)

    Article  Google Scholar 

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  9. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. In: NeurIPS (2021)

    Google Scholar 

  10. Fernandez, V., et al.: Can segmentation models be trained with fully synthetically generated data? In: Zhao, C., Svoboda, D., Wolterink, J.M., Escobar, M. (eds.) MICCAI Workshop. SASHIMI 2022, vol. 13570, pp. 79–90. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16980-9_8

  11. Fischl, B.: Freesurfer. In: Neuroimage (2012)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020)

    Article  Google Scholar 

  13. Guibas, J.T., Virdi, T.S., Li, P.S.: Synthetic medical images from dual generative adversarial networks. arXiv preprint arXiv:1709.01872 (2017)

  14. Han, C., et al.: Gan-based synthetic brain MR image generation. In: ISBI. IEEE (2018)

    Google Scholar 

  15. Hatamizadeh, A., et al.: Unetr: transformers for 3d medical image segmentation. In: WACV (2022)

    Google Scholar 

  16. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)

    Google Scholar 

  17. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv: Arxiv-2207.12598 (2022)

  18. Kwon, G., Han, C., Kim, D.: Generation of 3D brain MRI using auto-encoding generative adversarial networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 118–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_14

    Chapter  Google Scholar 

  19. Lambert, Z., Petitjean, C., Dubray, B., Kuan, S.: Segthor: segmentation of thoracic organs at risk in ct images. In: IPTA. IEEE (2020)

    Google Scholar 

  20. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19, 1498–1507 (2007)

    Article  Google Scholar 

  21. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  22. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Subramaniam, P., Kossen, T., et al.: Generating 3d tof-mra volumes and segmentation labels using generative adversarial networks. Med. Image Anal. 78, 102396 (2022)

    Article  Google Scholar 

  25. Sun, L., Chen, J., Xu, Y., Gong, M., Yu, K., Batmanghelich, K.: Hierarchical amortized gan for 3d high resolution medical image synthesis. IEEE J. Biomed. Health Inf. 28, 3966–3975 (2022)

    Article  Google Scholar 

  26. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3d medical image analysis. In: CVPR (2022)

    Google Scholar 

  27. Wang, T.C., et al.: Video-to-video synthesis. arXiv preprint arXiv:1808.06601 (2018)

  28. Yan, X., Tang, H., Sun, S., Ma, H., Kong, D., Xie, X.: After-unet: axial fusion transformer unet for medical image segmentation. In: WACV (2022)

    Google Scholar 

  29. You, C., et al.: Mine your own anatomy: revisiting medical image segmentation with extremely limited labels. arXiv preprint arXiv:2209.13476 (2022)

  30. You, C., et al.: Rethinking semi-supervised medical image segmentation: a variance-reduction perspective. arXiv preprint arXiv:2302.01735 (2023)

  31. You, C., Dai, W., Min, Y., Staib, L., Duncan, J.S.: Implicit anatomical rendering for medical image segmentation with stochastic experts. arXiv preprint arXiv:2304.03209 (2023)

  32. You, C., Dai, W., Min, Y., Staib, L., Sekhon, J., Duncan, J.S.: Action++: improving semi-supervised medical image segmentation with adaptive anatomical contrast. arXiv preprint arXiv:2304.02689 (2023)

  33. You, C., Dai, W., Staib, L., Duncan, J.S.: Bootstrapping semi-supervised medical image segmentation with anatomical-aware contrastive distillation. arXiv preprint arXiv:2206.02307 (2022)

  34. You, C., et al.: Class-aware adversarial transformers for medical image segmentation. In: NeurIPS (2022)

    Google Scholar 

  35. You, C., Zhao, R., Staib, L.H., Duncan, J.S.: Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI, vol. 13434, pp. 639–652. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16440-8_61

  36. You, C., Zhou, Y., Zhao, R., Staib, L., Duncan, J.S.: Simcvd: simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation. IEEE Trans. Med.Imaging 41, 2228–2237 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Han .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 29266 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, K. et al. (2023). MedGen3D: A Deep Generative Framework for Paired 3D Image and Mask Generation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics