Skip to main content

Enhancing Breast Cancer Risk Prediction by Incorporating Prior Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

Abstract

Recently, deep learning models have shown the potential to predict breast cancer risk and enable targeted screening strategies, but current models do not consider the change in the breast over time. In this paper, we present a new method, PRIME+, for breast cancer risk prediction that leverages prior mammograms using a transformer decoder, outperforming a state-of-the-art risk prediction method that only uses mammograms from a single time point. We validate our approach on a dataset with 16,113 exams and further demonstrate that it effectively captures patterns of changes from prior mammograms, such as changes in breast density, resulting in improved short-term and long-term breast cancer risk prediction. Experimental results show that our model achieves a statistically significant improvement in performance over the state-of-the-art based model, with a C-index increase from 0.68 to 0.73 (p < 0.05) on held-out test sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakker, M.F., et al.: Supplemental MRI screening for women with extremely dense breast tissue. N. Engl. J. Med. 381(22), 2091–2102 (2019)

    Article  Google Scholar 

  2. Boyd, N.F.: Mammographic density and risk of breast cancer. Am. Soc. Clin. Oncol. Educ. Book 33(1), e57–e62 (2013)

    Article  Google Scholar 

  3. Brentnall, A.R., Cuzick, J.: Risk models for breast cancer and their validation. Stat. Sci. Rev. J. Inst. Math. Stat. 35(1), 14 (2020)

    MathSciNet  Google Scholar 

  4. Brentnall, A.R., et al.: Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 17, 1–10 (2015)

    Article  Google Scholar 

  5. Dadsetan, S., Arefan, D., Berg, W.A., Zuley, M.L., Sumkin, J.H., Wu, S.: Deep learning of longitudinal mammogram examinations for breast cancer risk prediction. Pattern Recogn. 132, 108919 (2022)

    Article  Google Scholar 

  6. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837–845 (1988)

    Google Scholar 

  7. Duffy, S.W., et al.: Effect of mammographic screening from age 40 years on breast cancer mortality (UK age trial): final results of a randomised, controlled trial. Lancet Oncol. 21(9), 1165–1172 (2020)

    Article  Google Scholar 

  8. Eriksson, M., et al.: A risk model for digital breast tomosynthesis to predict breast cancer and guide clinical care. Sci. Transl. Med. 14(644), eabn3971 (2022)

    Google Scholar 

  9. Gastounioti, A., Desai, S., Ahluwalia, V.S., Conant, E.F., Kontos, D.: Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. Breast Cancer Res. 24(1), 1–12 (2022)

    Article  Google Scholar 

  10. Hakama, M., Coleman, M.P., Alexe, D.M., Auvinen, A.: Cancer screening: evidence and practice in Europe 2008. Eur. J. Cancer 44(10), 1404–1413 (2008)

    Article  Google Scholar 

  11. Hayward, J.H., et al.: Improving screening mammography outcomes through comparison with multiple prior mammograms. AJR Am. J. Roentgenol. 207(4), 918 (2016)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hussein, H., et al.: Supplemental breast cancer screening in women with dense breasts and negative mammography: a systematic review and meta-analysis. Radiology 306(3), e221785 (2023)

    Article  Google Scholar 

  14. National Cancer Institute: Breast cancer risk assessment tool (2011). https://www.cancer.gov/bcrisktool/. Accessed 13 Aug 2017

  15. World Cancer Research Fund International: Breast cancer statistics. https://www.wcrf.org/cancer-trends/breast-cancer-statistics/

  16. Kamarudin, A.N., Cox, T., Kolamunnage-Dona, R.: Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Med. Res. Methodol. 17(1), 1–19 (2017)

    Article  Google Scholar 

  17. Kang, L., Chen, W., Petrick, N.A., Gallas, B.D.: Comparing two correlated C indices with right-censored survival outcome: a one-shot nonparametric approach. Stat. Med. 34(4), 685–703 (2015)

    Article  MathSciNet  Google Scholar 

  18. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18(1), 1–12 (2018)

    Article  Google Scholar 

  19. Lee, C.I., Chen, L.E., Elmore, J.G.: Risk-based breast cancer screening: implications of breast density. Med. Clin. 101(4), 725–741 (2017)

    Google Scholar 

  20. Liu, Y., Azizpour, H., Strand, F., Smith, K.: Decoupling inherent risk and early cancer signs in image-based breast cancer risk models. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 230–240. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_23

    Chapter  Google Scholar 

  21. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  22. Ontario, H.Q., et al.: Screening mammography for women aged 40 to 49 years at average risk for breast cancer: an evidence-based analysis. Ont. Health Technol. Assess. Ser. 7(1), 1–32 (2007)

    Google Scholar 

  23. Paci, E.: Summary of the evidence of breast cancer service screening outcomes in Europe and first estimate of the benefit and harm balance sheet. J. Med. Screen. 19(1_suppl), 5–13 (2012)

    Google Scholar 

  24. Park, J., et al.: Screening mammogram classification with prior exams. arXiv preprint arXiv:1907.13057 (2019)

  25. Roelofs, A.A., et al.: Importance of comparison of current and prior mammograms in breast cancer screening. Radiology 242(1), 70–77 (2007)

    Google Scholar 

  26. Sumkin, J.H., et al.: Optimal reference mammography: a comparison of mammograms obtained 1 and 2 years before the present examination. Am. J. Roentgenol. 180(2), 343–346 (2003)

    Article  Google Scholar 

  27. Tyrer, J., Duffy, S.W., Cuzick, J.: A breast cancer prediction model incorporating familial and personal risk factors. Stat. Med. 23(7), 1111–1130 (2004)

    Article  Google Scholar 

  28. Uno, H., Cai, T., Pencina, M.J., D’Agostino, R.B., Wei, L.J.: On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat. Med. 30(10), 1105–1117 (2011)

    Article  MathSciNet  Google Scholar 

  29. Varela, C., Karssemeijer, N., Hendriks, J.H., Holland, R.: Use of prior mammograms in the classification of benign and malignant masses. Eur. J. Radiol. 56(2), 248–255 (2005)

    Article  Google Scholar 

  30. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  31. Veronesi, U., Boyle, P., Goldhirsch, A., Orecchia, R., Viale, G.: Breast cancer. Lancet 365, 1727–1741 (2005)

    Google Scholar 

  32. Yala, A., et al.: Multi-institutional validation of a mammography-based breast cancer risk model. J. Clin. Oncol. 40(16), 1732–1740 (2022)

    Article  Google Scholar 

  33. Yala, A., et al.: Toward robust mammography-based models for breast cancer risk. Sci. Transl. Med. 13(578), eaba4373 (2021)

    Google Scholar 

  34. Yeoh, H.H., et al.: RADIFUSION: a multi-radiomics deep learning based breast cancer risk prediction model using sequential mammographic images with image attention and bilateral asymmetry refinement. arXiv preprint arXiv:2304.00257 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeonsoo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, H., Kim, J., Park, E., Kim, M., Kim, T., Kooi, T. (2023). Enhancing Breast Cancer Risk Prediction by Incorporating Prior Images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics