Skip to main content

DiffULD: Diffusive Universal Lesion Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

Abstract

Universal Lesion Detection (ULD) in computed tomography (CT) plays an essential role in computer-aided diagnosis. Promising ULD results have been reported by anchor-based detection designs, but they have inherent drawbacks due to the use of anchors: (i) Insufficient training target and (ii) Difficulties in anchor design. Diffusion probability models (DPM) have demonstrated outstanding capabilities in many vision tasks. Many DPM-based approaches achieve great success in natural image object detection without using anchors. But they are still ineffective for ULD due to the insufficient training targets. In this paper, we propose a novel ULD method, DiffULD, which utilizes DPM for lesion detection. To tackle the negative effect triggered by insufficient targets, we introduce a novel Center-aligned bounding box (BBox) padding strategy that provides additional high-quality training targets yet avoids significant performance deterioration. DiffULD is inherently advanced in locating lesions with diverse sizes and shapes since it can predict with arbitrary boxes. Experiments on the benchmark dataset DeepLesion [32] show the superiority of DiffULD when compared to state-of-the-art ULD approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumgartner, M., Jäger, P.F., Isensee, F., Maier-Hein, K.H.: nnDetection: a self-configuring method for medical object detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 530–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_51

    Chapter  Google Scholar 

  2. Boah, K., et al.: DiffuseMorph: unsupervised deformable image registration using diffusion model. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV, pp. 347–364. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_20

  3. Cai, J., et al.: Deep volumetric universal lesion detection using light-weight pseudo 3D convolution and surface point regression. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_1

    Chapter  Google Scholar 

  4. Cai, J., et al.: Lesion-harvester: iteratively mining unlabeled lesions and hard-negative examples at scale. IEEE Trans. Med. Imaging 40(1), 59–70 (2020)

    Article  MathSciNet  Google Scholar 

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Chen, J., Zhang, Y., Wang, J., Zhou, X., He, Y., Zhang, T.: EllipseNet: anchor-free ellipse detection for automatic cardiac biometrics in fetal echocardiography. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 218–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_21

    Chapter  Google Scholar 

  7. Chen, S., et al.: DiffusionDet: diffusion model for object detection. arXiv preprint arXiv:2211.09788 (2022)

  8. Chen, T., et al.: A generalist framework for panoptic segmentation of images and videos. arXiv preprint arXiv:2210.06366 (2022)

  9. Duan, K., et al.: CenterNet++ for object detection. arXiv preprint arXiv:2204.08394 (2022)

  10. Ho, J., et al.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  11. Holmquist, K., et al.: DiffPose: multi-hypothesis human pose estimation using diffusion models. arXiv preprint arXiv:2211.16487 (2022)

  12. Li, F., et al.: DN-DETR: accelerate DETR training by introducing query DeNoising. In: IEEE CVPR, pp. 13619–13627 (2022)

    Google Scholar 

  13. Li, H., Han, H., Zhou, S.K.: Bounding maps for universal lesion detection. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 417–428. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_41

    Chapter  Google Scholar 

  14. Li, H., Chen, L., Han, H., Chi, Y., Zhou, S.K.: Conditional training with bounding map for universal lesion detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 141–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_14

    Chapter  Google Scholar 

  15. Li, H., et al.: SATr: slice attention with transformer for universal lesion detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI, pp. 163–174. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_16

    Chapter  Google Scholar 

  16. Li, Z., Zhang, S., Zhang, J., Huang, K., Wang, Y., Yu, Y.: MVP-net: multi-view FPN with position-aware attention for deep universal lesion detection. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 13–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_2

    Chapter  Google Scholar 

  17. Lin, C., Wu, H., Wen, Z., Qin, J.: Automated malaria cells detection from blood smears under severe class imbalance via importance-aware balanced group softmax. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 455–465. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_44

    Chapter  Google Scholar 

  18. Liu, Z., et al.: A ConvNet for the 2020s. In: IEEE CVPR, pp. 11976–11986 (2022)

    Google Scholar 

  19. Luo, L., Chen, H., Zhou, Y., Lin, H., Heng, P.-A.: OXnet: deep omni-supervised thoracic disease detection from chest X-Rays. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 537–548. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_50

    Chapter  Google Scholar 

  20. Lyu, F., Yang, B., Ma, A.J., Yuen, P.C.: A segmentation-assisted model for universal lesion detection with partial labels. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 117–127. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_12

    Chapter  Google Scholar 

  21. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  22. Ren, Y., et al.: Retina-match: ipsilateral mammography lesion matching in a single shot detection pipeline. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 345–354. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_33

    Chapter  Google Scholar 

  23. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: Advances in Neural Information Processing Systems, vol. 35, pp. 36479–36494 (2022)

    Google Scholar 

  24. Shahroudnejad, A., et al.: TUN-Det: a novel network for thyroid ultrasound nodule detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 656–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_62

    Chapter  Google Scholar 

  25. Sheoran, M., et al.: An efficient anchor-free universal lesion detection in CT-scans. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–4. IEEE (2022)

    Google Scholar 

  26. Sheoran, M., et al.: DKMA-ULD: domain knowledge augmented multi-head attention based robust universal lesion detection. arXiv preprint arXiv:2203.06886 (2022)

  27. Song, J., et al.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  28. Tang, Y., et al.: ULDor: a universal lesion detector for CT scans with pseudo masks and hard negative example mining. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 833–836. IEEE (2019)

    Google Scholar 

  29. Tang, Y., et al.: Weakly-supervised universal lesion segmentation with regional level set loss. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 515–525. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_48

    Chapter  Google Scholar 

  30. Tao, Q., Ge, Z., Cai, J., Yin, J., See, S.: Improving deep lesion detection using 3D contextual and spatial attention. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 185–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_21

    Chapter  Google Scholar 

  31. Tian, Z., et al.: FCOS: fully convolutional one-stage object detection. In: IEEE ICCV, pp. 9627–9636 (2019)

    Google Scholar 

  32. Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501–036501 (2018)

    Article  Google Scholar 

  33. Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_58

    Chapter  Google Scholar 

  34. Yan, K., et al.: MULAN: multitask universal lesion analysis network for joint lesion detection, tagging, and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 194–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_22

    Chapter  Google Scholar 

  35. Yan, K., et al.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in CT. IEEE Trans. Med. Imaging 40(10), 2759–2770 (2020)

    Article  Google Scholar 

  36. Yang, J., et al.: AlignShift: bridging the gap of imaging thickness in 3D anisotropic volumes. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 562–572. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_55

    Chapter  Google Scholar 

  37. Yang, J., He, Y., Kuang, K., Lin, Z., Pfister, H., Ni, B.: Asymmetric 3D context fusion for universal lesion detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 571–580. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_55

    Chapter  Google Scholar 

  38. Yang, J., et al.: Reinventing 2D convolutions for 3D images. IEEE J. Biomed. Health Inform. 25(8), 3009–3018 (2021)

    Article  Google Scholar 

  39. Yu, X., et al.: Deep attentive panoptic model for prostate cancer detection using biparametric MRI scans. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 594–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_58

    Chapter  Google Scholar 

  40. Zhang, S., et al.: Revisiting 3D context modeling with supervised pre-training for universal lesion detection in CT slices. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 542–551. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_53

    Chapter  Google Scholar 

  41. Zhao, Z., Pang, F., Liu, Z., Ye, C.: Positive-unlabeled learning for cell detection in histopathology images with incomplete annotations. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 509–518. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_49

    Chapter  Google Scholar 

  42. Zhou, S.K., et al.: Handbook of Medical Image Computing and Computer Assisted Intervention. Academic Press (2019)

    Google Scholar 

  43. Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109(5), 820–838 (2021)

    Article  Google Scholar 

  44. Zlocha, M., Dou, Q., Glocker, B.: Improving RetinaNet for CT lesion detection with dense masks from weak RECIST labels. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 402–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_45

    Chapter  Google Scholar 

Download references

Acknowledgement

Supported by Natural Science Foundation of China under Grant 62271465 and Open Fund Project of Guangdong Academy of Medical Sciences, China (No. YKY-KF202206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kevin Zhou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 954 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, P., Li, H., Jin, R., Zhou, S.K. (2023). DiffULD: Diffusive Universal Lesion Detection. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics