Skip to main content

Devil is in Channels: Contrastive Single Domain Generalization for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

Abstract

Deep learning-based medical image segmentation models suffer from performance degradation when deployed to a new healthcare center. To address this issue, unsupervised domain adaptation and multi-source domain generalization methods have been proposed, which, however, are less favorable for clinical practice due to the cost of acquiring target-domain data and the privacy concerns associated with redistributing the data from multiple source domains. In this paper, we propose a Channel-level Contrastive Single Domain Generalization (C\(^2\)SDG) model for medical image segmentation. In C\(^2\)SDG, the shallower features of each image and its style-augmented counterpart are extracted and used for contrastive training, resulting in the disentangled style representations and structure representations. The segmentation is performed based solely on the structure representations. Our method is novel in the contrastive perspective that enables channel-wise feature disentanglement using a single source domain. We evaluated C\(^2\)SDG against six SDG methods on a multi-domain joint optic cup and optic disc segmentation benchmark. Our results suggest the effectiveness of each module in C\(^2\)SDG and also indicate that C\(^2\)SDG outperforms the baseline and all competing methods with a large margin. The code is available at https://github.com/ShishuaiHu/CCSDG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almazroa, A., et al.: Retinal fundus images for glaucoma analysis: the RIGA dataset. In: Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, vol. 10579, p. 105790B. International Society for Optics and Photonics (2018)

    Google Scholar 

  2. Chen, C., Li, Z., Ouyang, C., Sinclair, M., Bai, W., Rueckert, D.: MaxStyle: adversarial style composition for robust medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 151–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_15

    Chapter  Google Scholar 

  3. Clarysse, J., Hörrmann, J., Yang, F.: Why adversarial training can hurt robust accuracy. In: International Conference on Learning Representations (ICLR) (2023). https://openreview.net/forum?id=-CA8yFkPc7O

  4. Decencière, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)

    Article  MATH  Google Scholar 

  5. Falk, T., et al.: U-net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67–70 (2019)

    Article  Google Scholar 

  6. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  7. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2021)

    Article  Google Scholar 

  8. Hu, S., Liao, Z., Xia, Y.: Domain specific convolution and high frequency reconstruction based unsupervised domain adaptation for medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 650–659. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_62

    Chapter  Google Scholar 

  9. Hu, S., Liao, Z., Xia, Y.: ProSFDA: prompt learning based source-free domain adaptation for medical image segmentation. arXiv preprint arXiv:2211.11514 (2022)

  10. Hu, S., Liao, Z., Zhang, J., Xia, Y.: Domain and content adaptive convolution based multi-source domain generalization for medical image segmentation. IEEE Trans. Med. Imaging 42(1), 233–244 (2022)

    Article  Google Scholar 

  11. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  12. Ma, H., Lin, X., Yu, Y.: I2F: a unified image-to-feature approach for domain adaptive semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  13. Ouyang, C., et al.: Causality-inspired single-source domain generalization for medical image segmentation. IEEE Trans. Med. Imaging 42, 1095–1106 (2022)

    Article  Google Scholar 

  14. Sprawls, P.: Image characteristics and quality. In: Physical Principles of Medical Imaging, pp. 1–16. Aspen Gaithersburg (1993)

    Google Scholar 

  15. Su, Z., Yao, K., Yang, X., Wang, Q., Sun, J., Huang, K.: Rethinking data augmentation for single-source domain generalization in medical image segmentation. In: AAAI Conference on Artificial Intelligence (AAAI) (2023)

    Google Scholar 

  16. Wang, J., et al.: Generalizing to unseen domains: a survey on domain generalization. IEEE Trans. Knowl. Data Eng. 35, 8052–8072 (2022)

    Google Scholar 

  17. Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst. Technol. 11(5), 1–46 (2020)

    Article  Google Scholar 

  18. Xie, X., Niu, J., Liu, X., Chen, Z., Tang, S., Yu, S.: A survey on incorporating domain knowledge into deep learning for medical image analysis. Med. Image Anal. 69, 101985 (2021). https://doi.org/10.1016/j.media.2021.101985

  19. Xu, Y., Xie, S., Reynolds, M., Ragoza, M., Gong, M., Batmanghelich, K.: Adversarial consistency for single domain generalization in medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 671–681. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_64

    Chapter  Google Scholar 

  20. Yang, Y., Soatto, S.: FDA: fourier domain adaptation for semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4085–4095 (2020)

    Google Scholar 

  21. Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)

    Article  Google Scholar 

  22. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 4396–4415 (2022)

    Google Scholar 

  23. Zhou, Z., Qi, L., Yang, X., Ni, D., Shi, Y.: Generalizable cross-modality medical image segmentation via style augmentation and dual normalization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20856–20865 (2022)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 62171377, in part by the Key Technologies Research and Development Program under Grant 2022YFC2009903/2022YFC2009900, in part by the Key Research and Development Program of Shaanxi Province, China, under Grant 2022GY-084, in part by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University under Grant CX2023016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5857 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, S., Liao, Z., Xia, Y. (2023). Devil is in Channels: Contrastive Single Domain Generalization for Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics