Skip to main content

One-Shot Traumatic Brain Segmentation with Adversarial Training and Uncertainty Rectification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Brain segmentation of patients with severe traumatic brain injuries (sTBI) is essential for clinical treatment, but fully-supervised segmentation is limited by the lack of annotated data. One-shot segmentation based on learned transformations (OSSLT) has emerged as a powerful tool to overcome the limitations of insufficient training samples, which involves learning spatial and appearance transformations to perform data augmentation, and learning segmentation with augmented images. However, current practices face challenges in the limited diversity of augmented samples and the potential label error introduced by learned transformations. In this paper, we propose a novel one-shot traumatic brain segmentation method that surpasses these limitations by adversarial training and uncertainty rectification. The proposed method challenges the segmentation by adversarial disturbance of augmented samples to improve both the diversity of augmented data and the robustness of segmentation. Furthermore, potential label error introduced by learned transformations is rectified according to the uncertainty in segmentation. We validate the proposed method by the one-shot segmentation of consciousness-related brain regions in traumatic brain MR scans. Experimental results demonstrate that our proposed method has surpassed state-of-the-art alternatives. Code is available at https://github.com/hsiangyuzhao/TBIOneShot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  2. Chen, C., et al.: Enhancing MR image segmentation with realistic adversarial data augmentation. Med. Image Anal. 82, 102597 (2022)

    Article  Google Scholar 

  3. Ding, Y., Yu, X., Yang, Y.: Modeling the probabilistic distribution of unlabeled data for one-shot medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1246–1254 (2021)

    Google Scholar 

  4. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  5. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  6. He, Y., et al.: Learning better registration to learn better few-shot medical image segmentation: authenticity, diversity, and robustness. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  7. He, Y., et al.: Deep complementary joint model for complex scene registration and few-shot segmentation on medical images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 770–786. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_45

    Chapter  Google Scholar 

  8. Huang, Z., et al.: The self and its resting state in consciousness: an investigation of the vegetative state. Hum. Brain Mapp. 35(5), 1997–2008 (2014)

    Article  Google Scholar 

  9. Olut, S., Shen, Z., Xu, Z., Gerber, S., Niethammer, M.: Adversarial data augmentation via deformation statistics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 643–659. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_38

    Chapter  Google Scholar 

  10. Qiao, Y., Tao, H., Huo, J., Shen, W., Wang, Q., Zhang, L.: Robust hydrocephalus brain segmentation via globally and locally spatial guidance. In: Abdulkadir, A., et al. (eds.) MLCN 2021. LNCS, vol. 13001, pp. 92–100. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87586-2_10

    Chapter  Google Scholar 

  11. Qin, P., et al.: How are different neural networks related to consciousness? Ann. Neurol. 78(4), 594–605 (2015)

    Article  Google Scholar 

  12. Ren, X., Huo, J., Xuan, K., Wei, D., Zhang, L., Wang, Q.: Robust brain magnetic resonance image segmentation for hydrocephalus patients: hard and soft attention. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 385–389. IEEE (2020)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  15. Wang, S., et al.: LT-Net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9162–9171 (2020)

    Google Scholar 

  16. Xu, Z., Niethammer, M.: DeepAtlas: joint semi-supervised learning of image registration and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 420–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_47

    Chapter  Google Scholar 

  17. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

  18. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vision 129(4), 1106–1120 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62001292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichi Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 506 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X. et al. (2023). One-Shot Traumatic Brain Segmentation with Adversarial Training and Uncertainty Rectification. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics