Skip to main content

SwinMM: Masked Multi-view with Swin Transformers for 3D Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Recent advancements in large-scale Vision Transformers have made significant strides in improving pre-trained models for medical image segmentation. However, these methods face a notable challenge in acquiring a substantial amount of pre-training data, particularly within the medical field. To address this limitation, we present Masked Multi-view with Swin Transformers (SwinMM), a novel multi-view pipeline for enabling accurate and data-efficient self-supervised medical image analysis. Our strategy harnesses the potential of multi-view information by incorporating two principal components. In the pre-training phase, we deploy a masked multi-view encoder devised to concurrently train masked multi-view observations through a range of diverse proxy tasks. These tasks span image reconstruction, rotation, contrastive learning, and a novel task that employs a mutual learning paradigm. This new task capitalizes on the consistency between predictions from various perspectives, enabling the extraction of hidden multi-view information from 3D medical data. In the fine-tuning stage, a cross-view decoder is developed to aggregate the multi-view information through a cross-attention block. Compared with the previous state-of-the-art self-supervised learning method Swin UNETR, SwinMM demonstrates a notable advantage on several medical image segmentation tasks. It allows for a smooth integration of multi-view information, significantly boosting both the accuracy and data-efficiency of the model. Code and models are available at https://github.com/UCSC-VLAA/SwinMM/.

Y. Wang, Z. Li, J. Mei and Z. Wei—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 1–13 (2022)

    Article  Google Scholar 

  2. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  3. Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37, 2514–2525 (2018)

    Article  Google Scholar 

  4. Chen, C., Liu, X., Ding, M., Zheng, J., Li, J.: 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 184–192. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_21

    Chapter  Google Scholar 

  5. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: ICLR (2020)

    Google Scholar 

  8. Grossberg, A.J., et al.: Imaging and clinical data archive for head and neck squamous cell carcinoma patients treated with radiotherapy. Sci. Data 5, 180173 (2018)

    Article  Google Scholar 

  9. Harmon, S.A., et al.: Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat. Commun. 11(1), 1–7 (2020)

    Article  Google Scholar 

  10. Hatamizadeh, A., Yang, D., Roth, H.R., Xu, D.: UNETR: transformers for 3D medical image segmentation. In: WACV (2022)

    Google Scholar 

  11. He, K., Chen, X., Xie, S., Li, Y., Doll’ar, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: CVPR (2022)

    Google Scholar 

  12. Hong, Q., et al.: A distance transformation deep forest framework with hybrid-feature fusion for CXR image classification. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  13. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24(1), 205–219 (2015)

    Article  Google Scholar 

  14. Johnson, C.D., Chen, M., Toledano, A.Y., et al.: Accuracy of CT colonography for detection of large adenomas and cancers. Obstet. Gynecol. Surv. 64, 35–37 (2009)

    Article  Google Scholar 

  15. Kim, S., Nam, J., Ko, B.C.: ViT-NeT: interpretable vision transformers with neural tree decoder. In: ICML (2022)

    Google Scholar 

  16. Li, Z., Li, Y., Li, Q., et al.: LViT: language meets vision transformer in medical image segmentation. IEEE Trans. Med. Imaging (2023)

    Google Scholar 

  17. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  18. Luo, X., Liao, W., Xiao, J., et al.: WORD: a large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image. Med. Image Anal. 82, 102642 (2022)

    Article  Google Scholar 

  19. Ma, J., Zhang, Y., Gu, S., et al.: AbdomenCT-1K: is abdominal organ segmentation a solved problem. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  20. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 561–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_34

    Chapter  Google Scholar 

  21. Peiris, H., Hayat, M., Chen, Z., Egan, G., Harandi, M.: A robust volumetric transformer for accurate 3D tumor segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13435. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_16

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Article  Google Scholar 

  24. Tang, Y., et al.: Self-supervised pre-training of Swin transformers for 3D medical image analysis. In: CVPR (2022)

    Google Scholar 

  25. Wu, D., et al.: A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 980–987. IEEE (2012)

    Google Scholar 

  26. Xia, Y., Yang, D., Yu, Z., et al.: Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation. Med. Image Anal. 65, 101766 (2020)

    Article  Google Scholar 

  27. Xie, Y., Zhang, J., Shen, C., Xia, Y.: CoTr: efficiently bridging CNN and transformer for 3D medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 171–180. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_16

    Chapter  Google Scholar 

  28. Zhai, P., Cong, H., Zhu, E., Zhao, G., Yu, Y., Li, J.: MVCNet: multiview contrastive network for unsupervised representation learning for 3-D CT lesions. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  29. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR (2018)

    Google Scholar 

  30. Zhao, Q., Wang, H., Wang, G.: LCOV-NET: a lightweight neural network for COVID-19 pneumonia lesion segmentation from 3D CT images. In: ISBI (2021)

    Google Scholar 

  31. Zhao, Z., et al.: MMGL: multi-scale multi-view global-local contrastive learning for semi-supervised cardiac image segmentation. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 401–405. IEEE (2022)

    Google Scholar 

  32. Zhou, L., Liu, H., Bae, J., He, J., Samaras, D., Prasanna, P.: Self pre-training with masked autoencoders for medical image analysis. arXiv preprint arXiv:2203.05573 (2022)

  33. Zhou, Y., et al.: Semi-supervised 3D abdominal multi-organ segmentation via deep multi-planar co-training. In: WACV (2019)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the Google Cloud Research Credits program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyin Zhou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 552 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. et al. (2023). SwinMM: Masked Multi-view with Swin Transformers for 3D Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics