Skip to main content

Boundary-Weighted Logit Consistency Improves Calibration of Segmentation Networks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14222))

Abstract

Neural network prediction probabilities and accuracy are often only weakly-correlated. Inherent label ambiguity in training data for image segmentation aggravates such miscalibration. We show that logit consistency across stochastic transformations acts as a spatially varying regularizer that prevents overconfident predictions at pixels with ambiguous labels. Our boundary-weighted extension of this regularizer provides state-of-the-art calibration for prostate and heart MRI segmentation. Code is available at https://github.com/neerakara/BWCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abulnaga, S.M., et al.: Automatic segmentation of the placenta in BOLD MRI time series. In: Licandro, R., Melbourne, A., Abaci Turk, E., Macgowan, C., Hutter, J. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2022. Lecture Notes in Computer Science, vol. 13575. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17117-8_1

  2. Arpit, D., Wang, H., Zhou, Y., Xiong, C.: Ensemble of averages: improving model selection and boosting performance in domain generalization. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  3. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  4. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37, 2514–2525 (2018)

    Article  Google Scholar 

  5. Bloch, N., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures. https://wiki.cancerimagingarchive.net/display/Public/NCI-ISBI+2013+Challenge+-+Automated+Segmentation+of+Prostate+Structures (2015)

  6. Bortsova, G., Dubost, F., Hogeweg, L., Katramados, I., de Bruijne, M.: Semi-supervised medical image segmentation via learning consistency under transformations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 810–818. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_90

    Chapter  Google Scholar 

  7. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S.., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

    Chapter  Google Scholar 

  8. Englesson, E., Azizpour, H.: Generalized Jensen-Shannon divergence loss for learning with noisy labels. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  9. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International conference on machine learning. PMLR (2017)

    Google Scholar 

  10. Hong, S., et al.: Hypernet-ensemble learning of segmentation probability for medical image segmentation with ambiguous labels. arXiv preprint arXiv:2112.06693 (2021)

  11. Hoopes, A., Mora, J.S., Dalca, A.V., Fischl, B., Hoffmann, M.: SynthStrip: skull-stripping for any brain image. NeuroImage 260, 119474 (2022)

    Article  Google Scholar 

  12. Islam, M., Glocker, B.: Spatially varying label smoothing: capturing uncertainty from expert annotations. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 677–688. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_52

    Chapter  Google Scholar 

  13. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in neural information processing systems (2018)

    Google Scholar 

  14. Larrazabal, A., Martinez, C., Dolz, J., Ferrante, E.: Maximum entropy on erroneous predictions (MEEP): improving model calibration for medical image segmentation. arXiv preprint arXiv:2112.12218 (2021)

  15. Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 32, 523–534 (2020)

    Article  Google Scholar 

  16. Liu, B., Ben Ayed, I., Galdran, A., Dolz, J.: The devil is in the margin: margin-based label smoothing for network calibration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  17. Luo, X., et al.: Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency. Med. Image Anal. 80, 102517 (2022)

    Article  Google Scholar 

  18. Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39, 3868–3878 (2020)

    Article  Google Scholar 

  19. Monteiro, M., et al.: Stochastic segmentation networks: modelling spatially correlated aleatoric uncertainty. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  20. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  21. Murugesan, B., Adiga V, S., Liu, B., Lombaert, H., Ayed, I.B., Dolz, J.: Trust your neighbours: penalty-based constraints for model calibration. arXiv preprint arXiv:2303.06268 (2023)

  22. Murugesan, B., Liu, B., Galdran, A., Ayed, I.B., Dolz, J.: Calibrating segmentation networks with margin-based label smoothing. arXiv preprint arXiv:2209.09641 (2022)

  23. Nixon, J., Dusenberry, M.W., Zhang, L., Jerfel, G., Tran, D.: Measuring calibration in deep learning. In: CVPR Workshops (2019)

    Google Scholar 

  24. Paglieroni, D.W.: Distance transforms: Properties and machine vision applications. Graphical models and image processing, CVGIP (1992)

    Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: Advances in neural information processing systems (2016)

    Google Scholar 

  27. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in neural information processing systems (2017)

    Google Scholar 

  28. Tustison, N.J., et al.: N4itk: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)

    Article  Google Scholar 

  29. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

  30. Wu, Y., et al.: Mutual consistency learning for semi-supervised medical image segmentation. Med. Image Anal. 81, 102530 (2022)

    Article  Google Scholar 

  31. Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39, 2531–2540 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by NIH NIBIB NAC P41EB015902, IBM, and the Swiss National Science Foundation under project P500PT-206955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerav Karani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karani, N., Dey, N., Golland, P. (2023). Boundary-Weighted Logit Consistency Improves Calibration of Segmentation Networks. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics