Skip to main content

M3D-NCA: Robust 3D Segmentation with Built-In Quality Control

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Medical image segmentation relies heavily on large-scale deep learning models, such as UNet-based architectures. However, the real-world utility of such models is limited by their high computational requirements, which makes them impractical for resource-constrained environments such as primary care facilities and conflict zones. Furthermore, shifts in the imaging domain can render these models ineffective and even compromise patient safety if such errors go undetected. To address these challenges, we propose M3D-NCA, a novel methodology that leverages Neural Cellular Automata (NCA) segmentation for 3D medical images using n-level patchification. Moreover, we exploit the variance in M3D-NCA to develop a novel quality metric which can automatically detect errors in the segmentation process of NCAs. M3D-NCA outperforms the two magnitudes larger UNet models in hippocampus and prostate segmentation by 2% Dice and can be run on a Raspberry Pi 4 Model B (2 GB RAM). This highlights the potential of M3D-NCA as an effective and efficient alternative for medical image segmentation in resource-constrained environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajani, T.S., Imoize, A.L., Atayero, A.A.: An overview of machine learning within embedded and mobile devices-optimizations and applications. Sensors 21(13), 4412 (2021)

    Article  Google Scholar 

  2. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 1–13 (2022)

    Article  Google Scholar 

  3. Frija, G., et al.: How to improve access to medical imaging in low-and middle-income countries? EClinicalMedicine 38, 101034 (2021)

    Article  Google Scholar 

  4. Gardner, M.: The fantastic combinations of Jhon Conway’s new solitaire game’life. Sci. Am. 223, 20–123 (1970)

    Google Scholar 

  5. Gilpin, W.: Cellular automata as convolutional neural networks. Phys. Rev. E 100(3), 032402 (2019)

    Article  Google Scholar 

  6. González, C., et al.: Distance-based detection of out-of-distribution silent failures for COVID-19 lung lesion segmentation. Med. Image Anal. 82, 102596 (2022)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Iakubovskii, P.: Segmentation models pyTorch (2019). https://github.com/qubvel/segmentation_models.pytorch

  9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  10. Jaff, D., Leatherman, S., Tawfik, L.: Improving quality of care in conflict settings: access and infrastructure are fundamental. Int. J. Qual. Health Care (2019)

    Google Scholar 

  11. Kalkhof, J., González, C., Mukhopadhyay, A.: Med-NCA: robust and lightweight segmentation with neural cellular automata. arXiv preprint arXiv:2302.03473 (2023)

  12. Mordvintsev, A., Randazzo, E., Niklasson, E., Levin, M.: Growing neural cellular automata. Distill 5(2), e23 (2020)

    Article  Google Scholar 

  13. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  14. Perez-Garcia, F.: fepegar/unet: First published version of PyTorch U-Net, October 2019. https://doi.org/10.5281/zenodo.3522306

  15. Pérez-García, F., Sparks, R., Ourselin, S.: Torchio: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Programs Biomed. 106236 (2021). https://doi.org/10.1016/j.cmpb.2021.106236, https://www.sciencedirect.com/science/article/pii/S0169260721003102

  16. Randazzo, E., Mordvintsev, A., Niklasson, E., Levin, M., Greydanus, S.: Self-classifying mnist digits. Distill 5(8), e00027-002 (2020)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  19. Sandler, M., et al.: Image segmentation via cellular automata. arXiv e-prints pp. arXiv-2008 (2020)

    Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  22. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kalkhof .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalkhof, J., Mukhopadhyay, A. (2023). M3D-NCA: Robust 3D Segmentation with Built-In Quality Control. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics