Skip to main content

FedContrast-GPA: Heterogeneous Federated Optimization via Local Contrastive Learning and Global Process-Aware Aggregation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14221))

Abstract

Federated learning is a promising strategy for performing privacy-preserving, distributed learning for medical image segmentation. However, the data-level heterogeneity as well as system-level heterogeneity makes it challenging to optimize. In this paper, we propose to improve Federated optimization via local Contrastive learning and Global Process-aware Aggregation (referred as FedContrast-GPA), aiming to jointly address both data-level and system-level heterogeneity issues. In specific, To address data-level heterogeneity, we propose to learn a unified latent feature space via an intra-client and inter-client local prototype based contrastive learning scheme. Among which, intra-client contrastive learning is adopted to improve the discriminative ability of learned feature embedding at each client, while inter-client contrastive learning is introduced to achieve cross-client distribution perception and alignment in a privacy preserving manner. To address system-level heterogeneity, we further propose a simple yet effective process-aware aggregation scheme to achieve effective straggler mitigation. Experimental results on six prostate segmentation datasets demonstrate large performance boost over existing state-of-the-art methods.

This study was partially supported by the Natural Science Foundation of China via project U20A20199 and 62201341.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  2. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  3. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: SCAFFOLD: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  4. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722) (2021)

    Google Scholar 

  5. Mendieta, M., Yang, T., Wang, P., Lee, M., Ding, Z., Chen, C.: Local learning matters: rethinking data-level heterogeneity in federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8397–8406 (2022)

    Google Scholar 

  6. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)

    Google Scholar 

  7. Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervision with Superpixels: training few-shot medical image segmentation without annotation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 762–780. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_45

    Chapter  Google Scholar 

  8. Zhou, T., Wang, W., Konukoglu, E., Van Gool, L.: Rethinking semantic segmentation: a prototype view. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2582–2593 (2022)

    Google Scholar 

  9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  10. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020)

  11. Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distribution for federated visual classification. arXiv preprint arXiv:1909.06335 (2019)

  12. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural Inf. Process. Syst. 33, 7611–7623 (2020)

    Google Scholar 

  13. Wu, Y., Zeng, D., Wang, Z., Shi, Y., Hu, J.: Federated contrastive learning for volumetric medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 367–377. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_35

    Chapter  Google Scholar 

  14. Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In: British Machine Vision Conference (BMVC). vol. 3, no. 4 (2018)

    Google Scholar 

  15. Liu, J., Qin, Y.: Prototype refinement network for few-shot segmentation. arXiv preprint arXiv:2002.03579 (2020)

  16. Liu, Y., Zhang, X., Zhang, S., He, X.: Part-aware prototype network for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 142–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_9

    Chapter  Google Scholar 

  17. Yu, Q., Dang, K., Tajbakhsh, N., Terzopoulos, D., Ding, X.: A location-sensitive local prototype network for few-shot medical image segmentation. In: IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 262–266. IEEE (2021)

    Google Scholar 

  18. Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A survey on contrastive self-supervised learning. Technologies 9(1), 2 (2020)

    Article  Google Scholar 

  19. Liu, W., Wu, Z., Ding, H., Liu, F., Lin, J. and Lin, G.: Few-shot segmentation with global and local contrastive learning. arXiv preprint arXiv:2108.05293 (2021)

  20. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. Adv. Neural Inf. Process. Syst. 33, 12546–12558 (2020)

    Google Scholar 

  21. Zeng, D., et al.: Positional contrastive learning for volumetric medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 221–230. Springer (2021)

    Google Scholar 

  22. Wu, Y., Zeng, D., Wang, Z., Shi, Y., Hu, J.: Distributed contrastive learning for medical image segmentation. Med. Image Anal. 81, 102564 (2022)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Bloch, N., Madabhushi, A., Huisman, H., Freymann, J., et al.: NCI-ISBI 2013 Challenge: Automated Segmentation of Prostate Structures (2015)

    Google Scholar 

  25. Lemaitre, G., Marti, R., Freixenet, J., Vilanova. J. C., et al.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. In: Computers in Biology and Medicine. vol. 60, pp. 8–31 (2015)

    Google Scholar 

  26. Litjens, G., Toth, R., Ven, W., Hoeks, C., et al.: Evaluation of prostate segmentation algorithms for MRI: the promise12 challenge. In: Medical Image Analysis. vol. 18, pp. 359–373 (2014)

    Google Scholar 

  27. Liang, P.P., et al.: Think locally, act globally: federated learning with local and global representations. In: Workshop on Federated Learning at Advances in Neural Information Processing Systems. vol. 32 (2019)

    Google Scholar 

  28. Liu, Q., Dou, Q., Yu, L., Heng, P.A.: MS-Net: multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE Trans. Med. Imaging 39(9), 2713–2724 (2020)

    Article  Google Scholar 

  29. Patro, S., Sahu, K.K.: Normalization: A preprocessing stage. arXiv preprint arXiv:1503.06462 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Q., Zheng, G. (2023). FedContrast-GPA: Heterogeneous Federated Optimization via Local Contrastive Learning and Global Process-Aware Aggregation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics