Skip to main content

Right for the Wrong Reason: Can Interpretable ML Techniques Detect Spurious Correlations?

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14221))

Abstract

While deep neural network models offer unmatched classification performance, they are prone to learning spurious correlations in the data. Such dependencies on confounding information can be difficult to detect using performance metrics if the test data comes from the same distribution as the training data. Interpretable ML methods such as post-hoc explanations or inherently interpretable classifiers promise to identify faulty model reasoning. However, there is mixed evidence whether many of these techniques are actually able to do so. In this paper, we propose a rigorous evaluation strategy to assess an explanation technique’s ability to correctly identify spurious correlations. Using this strategy, we evaluate five post-hoc explanation techniques and one inherently interpretable method for their ability to detect three types of artificially added confounders in a chest x-ray diagnosis task. We find that the post-hoc technique SHAP, as well as the inherently interpretable Attri-Net provide the best performance and can be used to reliably identify faulty model behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our code can be found under https://github.com/ss-sun/right-for-the-wrong-reason.

References

  1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  2. Adebayo, J., Muelly, M., Abelson, H., Kim, B.: Post hoc explanations may be ineffective for detecting unknown spurious correlation. In: International Conference on Learning Representations (2022)

    Google Scholar 

  3. Adebayo, J., Muelly, M., Liccardi, I., Kim, B.: Debugging tests for model explanations. arXiv preprint arXiv:2011.05429 (2020)

  4. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049 (2018)

  5. Arun, N., et al.: Assessing the trustworthiness of saliency maps for localizing abnormalities in medical imaging. Radiol.: Artif. Intell. 3(6), e200267 (2021)

    Google Scholar 

  6. Bohle, M., Fritz, M., Schiele, B.: Convolutional dynamic alignment networks for interpretable classifications. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10029–10038 (2021)

    Google Scholar 

  7. Boreiko, V., et al.: Visual explanations for the detection of diabetic retinopathy from retinal fundus images. In: Medical Image Computing and Computer Assisted Intervention (2022)

    Google Scholar 

  8. Brendel, W., Bethge, M.: Approximating CNNs with bag-of-local-features models works surprisingly well on ImageNet. arXiv preprint arXiv:1904.00760 (2019)

  9. Cohen, J.P., et al.: Gifsplanation via Latent Shift: a simple autoencoder approach to counterfactual generation for chest X-rays. In: Medical Imaging with Deep Learning, pp. 74–104. PMLR (2021)

    Google Scholar 

  10. Djoumessi, K.R., et al.: Sparse activations for interpretable disease grading. arXiv preprint arXiv:TODO (2023)

  11. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11), 665–673 (2020)

    Article  Google Scholar 

  12. Han, T., Srinivas, S., Lakkaraju, H.: Which explanation should i choose? a function approximation perspective to characterizing post hoc explanations. arXiv preprint arXiv:2206.01254 (2022)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B., Ball, R., Shpanskaya, K., et al.: Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 590–597 (2019)

    Google Scholar 

  15. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  16. Ribeiro, M.T., Singh, S., Guestrin, C.: why should i trust you? explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  17. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  18. Samangouei, P., Saeedi, A., Nakagawa, L., Silberman, N.: ExplainGAN: model explanation via decision boundary crossing transformations. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 666–681 (2018)

    Google Scholar 

  19. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  20. Singla, S., Pollack, B., Chen, J., Batmanghelich, K.: Explanation by progressive exaggeration. arXiv preprint arXiv:1911.00483 (2019)

  21. Sixt, L., Granz, M., Landgraf, T.: When explanations lie: why many modified BP attributions fail. In: International Conference on Machine Learning, pp. 9046–9057. PMLR (2020)

    Google Scholar 

  22. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

  23. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  24. Sun, S., Woerner, S., Maier, A., Koch, L.M., Baumgartner, C.F.: Inherently interpretable multi-label classification using class-specific counterfactuals. arXiv preprint arXiv:2303.00500 (2023)

  25. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  26. White, A., Garcez, A.D.: Measurable counterfactual local explanations for any classifier. arXiv preprint arXiv:1908.03020 (2019)

  27. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Precognition, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC number 2064/1 - Project number 390727645. The authors acknowledge support of the Carl Zeiss Foundation in the project “Certification and Foundations of Safe Machine Learning Systems in Healthcare” and the Hertie Foundation. The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Susu Sun, Lisa M. Koch, and Christian F. Baumgartner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susu Sun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 547 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, S., Koch, L.M., Baumgartner, C.F. (2023). Right for the Wrong Reason: Can Interpretable ML Techniques Detect Spurious Correlations?. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics